
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1964

Minimum transition time state assignment
methods for asynchronous sequential switching
circuits
James Henry Tracey
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Tracey, James Henry, "Minimum transition time state assignment methods for asynchronous sequential switching circuits " (1964).
Retrospective Theses and Dissertations. 3827.
https://lib.dr.iastate.edu/rtd/3827

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F3827&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F3827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F3827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F3827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F3827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F3827&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F3827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/3827?utm_source=lib.dr.iastate.edu%2Frtd%2F3827&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

This dissertation has been 65—3809
microfilmed exactly as received

TRACEY, James Henry, 1934-
MINIMUM TRANSITION TIME STATE ASSIGNMENT
METHODS FOR ASYNCHRONOUS SEQUENTIAL
SWITCHING CIRCUITS.

Iowa State University of Science and Technology
Ph.D., 1964
Engineering, electrical

University Microfilms, Inc., Ann Arbor, Michigan

www.manaraa.com

MINIMUM TRANSITION TIME STATE ASSIGNMENT METHODS FOR

ASYNCHRONOUS SEQUENTIAL SWITCHING CIRCUITS

by

James Henry Tracey

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Electrical Engineering

Approved:

In Charge of Major Work

Head of Major Department

Dean ' Graduate College

Iowa State University
Of Science and Technology

Ames, Iowa

1961+

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

ii

TABLE OF C0NTEI1TS

Page

I. INTRODUCTION 1

A. Switching Circuits 1

1. Synthesis of asynchronous sequential switching circuits 5

2. The secondary state assignment problem l6

B. Summary 30

II. PARTITION THEORY RELATED TO THE STATE ASSIGNMENT PROBLEM 31

A. Introduction to Partition Theory 31

1. Definitions and illustrations of partition properties 31

B. The Assignment Problem Stated in Terms of Partition Theory 35

1. A theorem on minimum transition time assignments 35

2. Construction of the partition list 38

3. Systematic reduction of the partition list h6

Assignment Method 66

5. Assignment Method #2 6%

6. Assignment Method if3 72

7. Incompletely merged flow tables 73

8. Conclusions and summary 76

III. SUMMARY 79

IV. BIBLIOGRAPHY 82

V. ACKNOWLEDGMENT 83

www.manaraa.com

1

I. INTRODUCTION

A. Switching Circuits

Switching circuits are usually characterized by a "'black box" as

shown in Figure 1. The switching network is shown with n input lines and

s)

N,
Switching

7

Network

Figure 1. Block diagram of a switching circuit

m output lines. In general the input variabels x^, x^,* • • x^ and the

output variables Z^, Z^, • • • may take on any finite number of values,

but in this paper it will be assumed that all such variables are binary

variables. The switching network of Figure 1 is described as a combina

tional switching network if the outputs are functions solely of the inputs.

In that case one may write

Zi = Xg. ' ' ' xj

h ' *2- ' ' ' 'n'

\ ' V'r ' ' ' 'n'

On the other hand, if the outputs depend not only on the present

www.manaraa.com

input but also on past circuit states, the circuit is described as a

sequential switching network. A sequential circuit is usually thought of

as consisting of a combinational circuit plus feedback loops. See Figure

2, The feedback loops and their associated storage capability (usually a

delay or flip-flop element) provide the necessary memory for the circuit.

The feedback variables Y^, Y^, • • • and y^, yg, • • • y^ are commonly

called secondary variables with the secondary excitations represented by

Y^, Yg, ' ' « Yp and the secondary states represented by y^, y^, • • • y^.

Since the next secondary state will be the same as the present secondary

excitation, it is convenient to refer to the Y's as "next state" variables

and the y's as "present state"variables. The secondary circuit is said to

be "stable" when the excitation is the same as the state. The setting

expressions for the memory elements may be written as functions of the

x's and y's. If delay is used for memory, the setting variables are the

Y's themselves, and one may write

Yi = ^1. yg. • • • yp)

Ï2 = Sgtxi. Xg. - ' ' yj. y^. • • • yp)

-p = *2- ' ' ' ^2- • • •

If the circuit inputs and memory element inputs are gated with clock

pulses the circuit is called a synchronous sequential circuit. In syn

chronous circuits one may imagine the clock pulses to be numbered so that

the i-th input combination is the input to the circuit that is gated with

the i-th clock pulse.

If no clocking is available the circuit is asynchronous. The i-th

www.manaraa.com

3

r

L -

Combinational

Switching

Network

> "l

->^2

n
X

e-
n

f

L_ L_

Y
p

Y
p

--4

-1

K-

1

Clock

-> z.
n

Figure 2. Model of a sequential switching circuit

www.manaraa.com

input combination for an asynchronous circuit is the input after i changes

in the input combination. The synchronous circuit recognizes new data

each clock pulse time while the asynchronous circuit recognizes new in

put data only when there is a change in the data itself.

As mentioned before, the outputs of a sequential switching circuit

are dependent on present input and past circuit states. For the general

case then, one may write the output expressions as

\ = "it*!. yv yj. • • • Jp)

h ' ^1' Ï2. • • • Jp'

\ =2' ' ' ' ^1' ̂ 2. • • • yp>

In terms of what has been developed thus far,, the secondary state

assignment problem involves coding the finite number of secondary states

with combinations of y^, y^, • • ' y^. This can be done in a trivial

fashion except when constraints are placed on the assignment. In syn

chronous circuits the usual constraint is to make the assigmcent so as to

minimize the cost of the combinational logic circuit. It is well known

that the cost of the combinational circuit may more than double if a

"poor" secondary assignment is used in place of a "good" assignment.

A primary consideration in asynchronous sequential circuits is to

make a secondary assignment such that the circuit will function properly

independent of variations in transmission delays of signals within the

circuit. Keep in mind that clock pulses are not available here to control

gating operations in the combinational circuit or in the feedback loop.

Of course, the cost of the combinational circuit is also important in the

www.manaraa.com

5

design of asynchronous sequential circuits but first consideration must

be given to the elimination of what is later described as dangerous

"race" conditions.

This paper is primarily concerned with secondary state assignment

methods for asynchronous sequential circuits. Assignment methods will be

developed to insure desired circuit action independent of variations in

circuit delays. The assignment methods will also be designed so as to

enable the circuit to accept data at a maximum rate.

1. Synthesis of asynchronous sequential switching circuits

In this section, em illustration of the synthesis of an asynchronous

sequential switching circuit will be given. The models and techniques

used here are essentially those of Huffman (5). Figure 3 is a block dia

gram of the circuit realization that will be referenced throughout the

synthesis procedure. The model of Figure 3 is just a slight modification

of that in Figure 2. Note that delays are used for memory, so the setting

functions for the memory elements are the secondary excitations variables

themselves.

Sequential circuit specifications are usually in the form of a word

statement, list of input-output sequences or a timing diagram. The syn

thesis procedure can best be explained by fabricating a circuit specifi

cation and illustrating the steps leading to a final circuit synthesis.

One nay begin with the following specification: A sequential circuit is

to have two inputs, x^ and x^, and one output, Z. The output, Z, is to

turn on only when x^ turns on and Z is to turn off only when Xg turns off.

Only one input variable may change state at a time.

The first step is to relate the sj)ecifications to a primitive flow

www.manaraa.com

6

r
->

Combinational

Switching

network

Delay ^
' -1

1_

Delay

Delay
. Y
X P

Figure 3. Model of an asynchronous sequential switching circuit

www.manaraa.com

T

table. The primitive flow table is simply a systematic arrangement of the

problem specifications. One might say that a primitive flow table is to

sequential circuits as a truth table is to combinational circuits. A

primitive flow table for this example is shown in Figure i*.

*1*2
00 01 11 10

© 2 - 3

10 4-

5 - 1. 0

- 6 0 7

0 6 - 3

1 1)

1 - 8 0

- 2 0 7

Figure it. Primitive flow table

Each of the columns of the flow table represents an input state and each

row of the table represents an internal or secondary state. The entries

of the flow table (circled or uncircled) indicate the next secondary

state. For this reason, a flow table is sometimes called a "next state"

matrix. For this example, if the circuit is in secondary row k and an

input combination of x^xg = 01 is presented, the next secondary state will

be row 6. As long as the input combination remains 01, there will be no

www.manaraa.com

8

further secondary circuit action and for this reason we call the circled

6 in row 6 a stable state. Thus, the uncircled entries of the flow table

are called unstable entries and the circled entries are called stable

entries. The circuit outputs are identified with the stable entries, or

states, of the table. The dash (-) entries of the table are unspecified

entries. They resulted from the input restriction that only one input

variable changes state at a time. Therefore, there is no need to define

the circuit action for the case of two input variables changing state

simultaneously. As usual, these optional entries, or "don't cares", may

be filled in later with any entry one chooses. Later it will be shown

that proper choices for these optional entries can be an aid in problem

simplification.

It is helpful at this point to trace through a particular input

sequence for the primitive flow table of Figure k. Suppose the circuit

is presently in stable state 1 with an input = 00 and an output of

Z = 0. Consider now an input sequence x^x^: GO, 10, 11, 10. When the

input combination is changed to 10, motion is horizontal in the table to

unstable 3. I'lext, the secondary circuit changes and goes from unstable 3

in row 1 to stable 3 in row 3 and there the circuit has an output of

Z = 1. For the next input the circuit goes to unstable 4 and then to

stable 4 with an output of Z = 1. For the last input of the sequence it

goes to unstable 7» stable 7» and an output of Z = 0. Notice that the

relationship between input and output for this sequence is that specified

in the original problem specifications. The binary 1 is associated with

"on" and the binary 0 is associated with "off".

The next step is a check for redundant stable states. Redundant

www.manaraa.com

9

stable states are sometimes introduced inadvertently during the construc

tion of the primitive flow table because it is not apparent that two

states are actually equivalent. Systematic techniques for detecting

equivalent states in a primitive flow table are well known in the litera

ture (1,8). It will suffice here to say that two stable states are

equivalent if

(1) They have the same input state, and

(2) They have the same output state, and

(3) Each transition from these states, for the same input,

is either to the same state or equivalent states.

There are no redundant states in the present example so one may continue.

A characteristic of the primitive flow table is that there is only

one stable state to a row and hence the outputs may be directly associated

with the rows of the flow table. Making a secondary assignment consists

of coding the rows of the flow table with combinations of y^, yg, • • • y^.

It would appear that the table in Figure 4 could be coded with at least

three secondary variables, y^, y^ and y^. Clearly, if this were done, the

output would be a function solely of these secondary variables.

By a technique called merging, the output can be made to be a func

tion of the input and secondary state. Merging usually results in a

shorter flow table and a fewer number of secondary variables to code the

rows. Two rows of a flow table may be merged if there are no conflicting

state numbers in corresponding columns of each row. If a state number

is circled in one of the merging rows, it is circled in the merged row.

Here is a place where optional entries may be filled in so as to obtain

an optimum merge. Generally, there is more than one way of merging the

www.manaraa.com

10

rows of a flow table and a merger diagram is helpful in obtaining an

optimum merge. A merger diagram has as its nodes the numbered rows of

the flow table and shows all possible mergers of these rows. See Figure

5 for a merger diagram of the flow table in Figure U. From the merger

diagram, a suitable merge is determined. Usually one seeks to reduce the

number of rows in the flow table to a minimum. The idea here is that

fewer rows in the flow table may result in a need for fewer variables to

code the secondary states. The merged flow table for the present example

appears in Figure 6.

Figure 5. Merger diagram

www.manaraa.com

11

00 01 11 10

a ©0 1. 3

b © 6 1, @

c 1 @0 T

d 1 2 0©

Figure 6. Merged flow table

The merging was done with no consideration of the output and it may

no longer be true, in the general case, that each row can now be asso

ciated with a particular output combination. Therefore, circuit outputs

are usually not shown on the merged flow table. Notice, for this example,

that the optimum merge happened to be that obtained by merging only rows

with the same output. This is one case then, where it would be possible

to show the output combinations on the merged flow table.

The next step of the synthesis procedure is the secondary assignment.

Combinations of variables y^, y^, • • • y^ are assigned to distinguish

the rows of the merged flow table = The problems involved in finding a

satisfactory assignment will be discussed in some detail in the next sec

tion. For now, what is known to be a satisfactory assignment will be made

so that the reader may continue on through the remainder of the synthesis

procedure without loss of continuity. A satisfactory assignment is shown

in Figure J.

www.manaraa.com

12

Row a - 00

b - 01

c - 11

d - 10

Figure T. Secondary assignment

After the secondary assignment is made, the excitation matrix is

constructed. It was mentioned earlier that the flow table is a next

state matrix. The construction of the excitation matrix then, amounts to

replacing the numbered entries of the flow table with appropriate "next

state" binary codes. As stated previously, the Y*s are "next state"

variables and therefore the internal entries of the excitation matrix

are truth values for the Y's. For this reason, the excitation matrix is

referred to as a Y-map. The Y-map for this example is shown in Figure 8.

y 1̂ 2 00 01 11 10

00 00 00 01 01 a

01 01 11 11 01 b

11 10 11 11 10 c

10 00 00 10 10 d

?1?2

Figure 8. Excitation matrix or Y-map

www.manaraa.com

13

In the next section we will show that one way of insuring proper operation

of the final circuit independent of variations in transmission delays, is

to excite only one secondary variable to change state at a time. There

fore, in the 00 column, row c, of Figure 8, a transition is effected from

row c to row d and then to row a instead of directly from row c to row a.

The excitation expressions, and can be conveniently read from

the Y-map since the presentation is in the form of a Karnaugh map. From

Figure 8, one may write

Ï1 = V2 " Vs * Vl

Ï2 = % + % ̂ %

Following the excitation matrix, an output matrix is prepared by

first replacing each stable state in Figure 6 with the appropriate output

combination from the primitive flow table of Figure 4. This stage of

development is shown in Figure 9. If output transients are undesirable.

*1*2

y^y^ 00 01 11 10

00

01

11

10

0 0

1 1

1 1

0 0

b

c

d

Figure 9. Partly developed output matrix

the remaining locations of Figure 9 are filled in so that the output will

change at most once for each change in input. If this restriction is

www.manaraa.com

unnecessary in the practical application, one treats these locations as

"don't care" conditions or optional entries. Figure 10 shows the com

pleted output matrix, or what is sometimes called the Z-map, for the

case of no output transients allowed. The output expression can be read

directly from Figure 10 as Z = y^.

00 01 11 10

00 0 0 a

01 1 1 1 1 b

11 - 1 1 - c

10 0 0 0 0 d
Z

Figure 10. Output matrix or Z-map

All that remains now is to synthesize the combinational logic for

Y^, Yg and Z and then complete the feedback loops in accordance with

Figure 3. The complete logical design is shown in Figure 11.

Admittedly the steps of the synthesis procedure were rather brief

in their explanation. For a more thorough treatment the reader is refer

red to the literature (1,7,8). In Figure 12 is a pictorial representation

of the various parts of the synthesis procedure that have been presented.

www.manaraa.com

15

Delay

Delay

=[h ̂ ̂
"AND" Gate "OR" Gate "INVERTER"

Figure 11. Logic design of synthesis example

www.manaraa.com

l6

Problem statement

\ (

Primitive flow table

>

Check for
states

redundant

t

Merged flow table

\ !

Secondary assignment

N f
Excitation matrix

!

Output matrix

V t

Logical design

Figure 12. Synthesis procedure

2o The secondary state assignment problem

In this section a close examination will be made of the secondary

state assignment problem and the constraints under which the assignment

must be made. A new merged flow table, different from that used in the

previous example, will be used to better illustrate the problems involved

in making a satisfactory assignment.

www.manaraa.com

17

Consider the merged flow table of Figure 13. The input combinations

© 2 3 a

5 © 0 © ^
8 6 © c

1 ©© 7 d

Figure 13. Merged flow table

are labeled simply and Ij^ since their binary code is of no par

ticular interest at present. The rows that must be coded with secondary

state variables are lettered a through d.

First an attempt will be made to make the same secondary assignment

for this flow table that was made for the merged flow table in Figure 6,

a - 00, b - 01, c - 11 and d - 10. Figure lit shows the excitation that

results from such an assignment.

^1^2

- 00 a

^1^2

- 00 00 01 10 11

b - 01 11 01 01 01

c - 11 11 10 01 11

d - 10 00 10 10 01

Figure l4. Excitation matrix

www.manaraa.com

18

Consider now the transition from unstable 4 to stable 4 in Figure 13,

which is the transition from row a to row c under input in Figure 1^4.

When the circuit is in unstable 4 the situation is as shown in Figure 15.

^1 = ^ V Delay J Delay = 0

Y2 = 1 Delay J Delay Yg = 0

Figure 15. Excitation of secondary state variables

The secondary state is presently 00 and excitation function is in the

process of exciting the secondary state to 11. The delays of Figure 15

are a part of the model in Figure 3. Practically speaking, these delays

may be thought of as lumped combinational logic delay, amplification in

the feedback loop to give greater than unity gain, or added delay to

improve circuit performance. Now if these delays of Figure 15 are of the

same magnitude, the next secondary state will be 11. However, if the

delay associated with is longer than the delay associated with Y^, y g

will be set to 1 before y^ is set to a 1. That means the circuit will

momentarily find itself in secondary state y^yg = 01. Furthermore, once

the secondary state becomes 01, Figure l4 shows that the excitation is

changed to Y^Y^ = 01 and no further secondary action takes place. But

location y^y^ = Y^Yg = 01 under input Ij^ in Figure iH corresponds to

stable state T in Figure 13. Ifhat was intended to be a transition from

row a to row c has ended up in row b because of unequal transmission

delays in the circuit. Such a circuit malfunction is said to be the

www.manaraa.com

19

result of a critical race condition. It will be convenient at this point

to list some definitions.

Definition 1: %en the secondary excitation differs in value

from the present secondary state in none of the bit positions,

the circuit is stable.

Definition 2: When the secondary excitation differs in value

from the present secondary state in exactly one bit position,

the circuit is said to be cycling from the present secondary

state to the secondary state that agrees with the present

excitation.

Definition 3: When the secondary excitation differs in value

from the present secondary state in two or more bit positions

the circuit is said to be racing from the present secondary

state to the secondary state that agrees with the present

excitation.

Definition If a race condition exists and unequal transmission

delays can possibly cause the circuit to reach a stable state other

than the one intended, the race is called a critical race.

Definition 5: If a race condition exists and unequal transmission

delays cannot possibly cause the circuit to reach a stable state

other than the one intended, the race is called a non-critical

race.

Quite obviously, critical races should be avoided in the design of an

asynchronous sequential switching circuit. It might be mentioned here

that the problem of making a secondary assignment to avoid critical races

does not exist for the synchronous sequential circuit since gating pulses

www.manaraa.com

from a clock are available to control delay and element switching.

Assignments to eliminate all races One obvious way to avoid the

introduction of critical races in the circuit design is to eliminate

races altogether. This can be done by requiring that all transitions be

made in cyclic or totally sequential fashion. An attempt will be made to

produce such an assignment for the flow table of Figure 13.

A helpful tool in accomplishing this type of assignment is the

transition diagram. Each row of the flow table is represented by a node

in the transition diagram and each inter-row transition is shown by a

line joining the appropriate nodes. It has been common in the literature

to use solid lines for those transitions that must go directly from an

unstable entry to a stable entry and broken lines for those transitions

having alternate routes. Alternate routes exist when there is more than

one unstable entry of the same number. A transition diagram for this

example is the following:

a b

It is clear that the number of secondary variables needed to code

any n-row flow table must be greater than or equal to log^n. One might

try to code this flow table with two secondary variables. But if cycles

are allowed, the transition diagram shows that one must cycle, for

example, from a to b, a to c and a to d. Cycling on a transition dia

gram corresponds to moving between adjacent squares on a Karnaugh map.

Recall that two squares are adjacent on a Karnaugh map if only one

www.manaraa.com

21

variable changes state in moving from the one square to the other. What

is really being said here then, is that if the rows of the flow table,

lettered a through d, are associated with the squares of a two-variable

Karnaugh map, it is required that square a to be adjacent to squares b,

c and d. Obviously this is impossible. However, a satisfactory assign

ment can be made if one increases the number of secondary state variables

to three. The Karnaugh map is such a convenient way to look at particular

assignments that it will be used extensively throughout the paper. A

satisfactory assignment using three secondary variables is shown in map

foi-m in Figure l6. The letters a, b, c, d correspond to the rows of the

0

1

Figure l6. Karnaugh map of secondary assignment

flow table in Figure 13 and the upper case letters E, F, G, H are called

"spare" secondary rows. These spares correspond to optional or "don't

care" rows in the coded flow table. It may be necessary to fill the

optional rows in with particular state numbers in order to effect all the

transitions shown in the transition diagram. It is easy to determine

whether or not a secondary assignment is satisfactory simply by tracing

out on the Karnaugh map of the assignment, all transitions shown on the

00 01 11 10

a b c E

F d G H

www.manaraa.com

22

transition diagram. If only cycles are allowed, transitions on the

Karnaugh map must trace through adjacent squares. But squares passed

through should be spare rows or the cycle may end in an undesirable

state. In this example, all transitions may be made according to the

following list which we will call the transitions specifications:

ab

aEc

aFd

be

bd

cGd

This list is not unique in that the transition from row a to row c could

be accomplished as aFHGc. The example flow table with the above secondary

assignment and transition specifications is shown in Figure 17. A solid

arrow indicates a cycle. The absence of an arrow leaving an unstable

state implies a cycle directly to the stable state of the same number.

It should be pointed out that in preparing and reading the transitions

specifications the order of the transition is unimportant. In other

words, once the transition from row a to c is specified as aEc, a trans

ition from row c to a is specified to be cEa.

The spare states E, F, G and H may be used in more than one transition

each, although there was no need to consider this possibility in our

example. It can easily be shown that in general the same spare secondary

row may be used for all those transition specifications that either begin

or end in the same row. For example, from Figure l6 one could write

www.manaraa.com

23

Figure IT. Flow table with secondary assignment

transition specifications aFd and aFHEc for the same flow table.

Systematic methods for determining assignments with no races are

well known in the literature (1,5,8).

Assignments to eliminate only critical races In the previous

section, an assignment method was discussed that allowed all transitions

to be made without the introduction of any races. That was one way of

assuring no circuit malfunctions due to critical races. All transitions

were cyclic in nature and only one secondary state variable was excited

at a time during a transition. Now, secondary assignments that allow

multiple changes of secondary variables will be discussed. Remember

that when more than one secondary variable is excited, a race condition

exists. Therefore, one must insure that all races are non-critical.

The same example flow table will be used with a different secondary

www.manaraa.com

2h

assignment to illustrate the use of non-critical races. The flow table

and assignment appears in Figure l8. It will be demonstrated that all

^3

@2 3 ii

5 © 0 ©
0 8 6 ©

1 ®© T

a %
b yg

0

00 01 11 10

c

yg

0 a F c H

d
1 E b G d

Figure 18. Flow table and secondary assignment

transitions may be accomplished with non-critical races. One sure test

as to whether an assignment is workable or not is to construct the excita

tion matrix. Faulty assignments result in an inability to properly con

struct this matrix. In Figure 19 the excitation matrix for this example

is shown. That part of the matrix for the transition from unstable 5 to

stable 5 under input I^ will be examined. t^3n the circuit is in unstable

5, the present secondary state is Oil and the present excitation is 110.

The excitation is different from the present state in the first and third

bit positions. If y^ and y^ both change state simultaneously, the circuit

will go directly from state Oil to state 110. However, if y^ changes

before y^, the circuit will momentarily be in secondary state 111. There

fore, the secondary state 111 must have the capability of providing the

proper excitation to carry the transition on through to stable 5. Faulty

www.manaraa.com

25

yiygY]

a - 000

E - 001

b - Oil

F - 010

c - 110

G - 111

d - 101

H - 100

^2 =3

000 oil

000 oil

110 oil

110 oil

110 101

110 101

000 101

000 101

110 110

oil oil

oil oil

110 110

110 110

oil oil

oil oil

110 Ho

Figure 19. Excitation matrix

assignments result in at least one case of conflicting excitations. Such

is not the case here; an excitation of 110 is shown, the code associated

with stable state 5, in the spare secondary row G under input I^,

On the other hand, may change after y^ and the circuit will

momentarily be in spare F. Therefore, spare F under input must also

show an excitation of 110.

It is interesting to note how conveniently all this information is

displayed in a Karnaugh map of the assignment. Consider the same transi

tion, b to c, on the assignment map in Figure l8. It is easy to see that

c is a Hamming distance of two from b. In other words, the shortest path

from b to c through adjacent squares on the map (changing one variable at

a time) is two squares. The squares involved in the race from b to c are

all those squares covered, moving cyclicly from b to c, over all paths of

www.manaraa.com

length two. The length of the path is taken to he a count of the number

of squares traversed in moving cyclicly from b to c. These four squares,

a, F, G, c must all show the same excitation under input in the excita

tion matrix of the example. Since the transition was from a to c, they

all have an excitation corresponding to secondary state c, or 110. If

the transition had been from c ̂ a, these locations would all show an

excitation of 000.

The above illustration can obviously be generalized for an arbitrary

race from row r. to row r. under input I, for any flow table assignment.
1 J ^

Let r^ be a Hamming distance of n from row r^. All rows encountered in

going from r^ to bj- all paths of length n, and including rows r^ and

r , must show as an excitation, the assigned secondary state of row r..
V O

Clearly, for a distajice n, 2^ rows will have the same excitation.

There is an important subtlety that must be checked in an assignment

utilizing races. This can best be explained with a different example.

Consider an 8 row flow table with rows lettered a through h in which all

transitions occur except a to b, c to d, e to f and g to h. A single

column of such a flow table might look like Figure 20. Shown also in

Figure 20 is a seemingly satisfactory secondary assignment and a partially

constructed excitation matrix. The problem comes about in filling in a

proper excitatiçn for spare row L. The race from row c to a is non-

critical but implies that the excitation in L be 0000. The race from f

to g is also non-critical but implies that the excitation in L be 0101.

Spare row L can be given just one excitation so the assignment is unsatis

factory- if one insists on races for the transitions c to a and f to g.

We say in this case, that the transition from c to a races critically

www.manaraa.com

27

©
2

1

it

©

©
©

Flow table column

%

00 01 11 10

00

01

11

10

a J d K

~L g M f

c N b P

Q e R h

yiygygyk

0000

0001

0011

Q - 0010

e - 0110

N - 0111

g - 0101

J - 0100

d - 1100

B. —

L -

c -

M - 1101

b - 1111

R - 1110

h - 1010

P - 1011

f - 1001 0101

K - 1000

Secondary assignment Partial excitation matrix

Figure 20, Flow table with assignment and partial excitation matrix

0000

0000

0000

0110

0110

0101

0101

0101

0101

0110

0110

1010

with the transition f to g. This is like the example of Figures 13 and

l6 with cyclic specifications in that two transitions may make use of the

same spare only if either the beginning or end of the transition is the

same row. Thus, for the assignment in Figure 20, we could specify a pair

of races as a(race)c and g(race)c but not the pair a(race)c and g(race)f

www.manaraa.com

28

unless the a to c and g to f transitions occurred in different columns of

the flow table.

In the above example of Figure l8, a secondary assignment was given

that involved races for all transitions while in the previous example

with the same flow table, all transitions were accomplished with cycles.

It is quite possible in many problems to show a mixture of the two. For

example, it is easy to see from the Karnaugh map of Figure l8 that one

could choose to cycle from b to F and then to c instead of racing direct

ly from b to c. In fact, it is quite clear that any transition that can

be accomplished by a non-critical race can also be accomplished with just

cycles, for the same assignment.

There is a significant difference between the cyclic assignment and

the race assignment given for the flow table in Figure 13. The flow table

and two assignments are repeated in Figure 21 for easy reference.

Il =2 I3 =4

Q 2 3 4

5 © 0 ©
0 8 6 ©

1 © © T

V2

00 01 11 10
a

J

0 a b c E
b

c
1 F d G H

Assignment 1 (cyclic)

V2

y_ 00 01 11 10

a F c H

h G d

Figure 21. Flow table with cyclic and race assignments

www.manaraa.com

Consider the transition from row c to d under input for each

assignment. In Assignment 1 we must first cycle to G and then cycle to

d while in Assignment 2 we can race directly from c to d. In Assignment

1, y^ is excited at the beginning of the transition but y^ is not excited

until the circuit reaches spare row G. But in Assignment 2, both y^ and

y^ are excited at the beginning of the transition. It is true that in

Assignment 2 the circuit may momentarily be in a spare secondary state

F or G, but the point is that all secondaries that are to switch have

begun to switch prior to arrival at the spare. If a unit of time, T, is

defined as the longest time required for any one state variable to change,

the c to d transition in Assignment 1 may require a total transition time

of 2T while in Assignment 2, the transition will be completed in, at most,

time T. The first assignment then, requires input information to come at

a rate no greater than 1/2T while the second will allow the circuit to

accept information at a rate 1/T. As cycles increase in length for larger

flow tables, assignments eliminating all races become less attractive in

terms of circuit speed. An important aspect of the secondary state

assignment problem is the development of a systematic assignment procedure

that will allow all transitions to be accomplished in a minimum amount of

time. This does not preclude the use of any cycles but simply says that

if cycles are used, they must be of unit length.

The major contribution of this paper is the development of a minimum

transition time secondary state assignment algorithm for asynchronous

sequential circuits. One might wonder why assignments using only cycles

are of any importance in view of the fact that both assignments in Figure

21 used the same number of secondary variables. Huffman (5) has shown

www.manaraa.com

30

standard assignments, which we will use as upper bounds, for 2^-row

(m an integer) flow tables that require 2m - 1 secondary variables for

cyclic specifications but 2^^ - 1 variables for minimum transition time

specifications. Therefore, if minimum number of secondary variables is

a consideration, one might choose an assignment whereby all transitions,

or most transitions, are accomplished with cycles. This might be par

ticularly true for larger flow tables.

B. Summary

In summary, this section serves to introduce design problems asso

ciated with asynchronous sequential switching circuits. The secondary

state assignment problem and assignment constraints were studied in some

detail. The characteristics of satisfactory assignments were studied to

show why one assignment might be preferable over another. General assign

ment methods itere not discussed; assignments were stated and then

analyzed. Section II will be devoted to the development of algorithms

for construction of minimum transition time assignment codes.

www.manaraa.com

31

II. PARTITION THEORY RELATED TO THE STATE ASSIGNMENT PROBLEM

A. Introduction to Partition Theory

The purpose of this section is to develop algorithms for the con

struction of minimum transition time secondary state assignments for

asynchronous sequential circuits, A minimum code assignment will be

defined as that assignment which allows all transitions to be accomplish

ed in a minimum amount of time and uses the fewest number of secondary

state variables.

The algorithms developed in this paper are strongly based on the

concept of partition theory, and therefore a brief introduction to parti

tion theory will be a necessity. Hartmanis (k) is responsible for much of

the original work in partition theory and his terminology will be used

throughout this paper. Hartmanis was primarily interested in a solution

to the state assignment problem for synchronous sequential circuits. It

will be remembered that the state assignment problem for synchronous cir

cuits is to find an assignment that minimizes the combinational logic

requirements. As pointed out previously, the problem of avoiding critical

race conditions need not exist in synchronous circuits. So the applica

tion of partition theory will be quite different here in the case of

asynchronous circuits where the state assignment problem is defined to

be that of obtaining assignments that avoid these critical race conditions.

1. Definitions and illustrations of partition properties

This section begins with a definition due to Hartmanis.

Definition 6: A partition n on a set S is a collection of

disjoint subsets of S such that their set union is S.

www.manaraa.com

32

The subsets of the partition n on S are called the blocks of the

partition and ir is described by listing these blocks. The partition

TT = 0 is that partition in which each block consists of a single element;

the partition ir = I is that partition in which all elements are contained

in one block. The partitions ÏÏ = 0 and tr = I are called trivial

partitions.

As an illustration of what is meant by a partition, consider an

arbitrary assignment for the following flow table with rows lettered a

through d:

a

b

c

d

One says that the variable y^ determines the partition - a,b; c,d and

yg determines the partition = a,c; b^d . The elements of partition

are a, b, c, and d; the blocks are a,b and c,d. Next, it is convenient to

define some algebraic properties of partitions.

Definition 7: Partition is ̂ if and only if every

block of TTg is contained in a block of ÏÏ^.

The sum of two partitions, + Mg, is defined as follows :

Definition 8: Two elements a and b are in the same block

of + TTg if and only if these elements are in the same

- 00

- 01

- 10

- 11

www.manaraa.com

33

block of ïï^ or ÏÏ^ or both.

The product of two partitions, is defined as follows:

Definition 9 ' Two elements a and b are in the same block of

TT^'Ti^ if and only if they are in the same block of and in

the same block of

To illustrate the construction of the product and sum of two parti

tions, consider again ir^ = {a,b; c,d} and = {a,c; b,d}. Then =

{a; b; c; d} = 0 and + Mg = {a,b,c,d} = I. Clearly, if the partitions

^1' ̂ 2' * * * ^i uniquely encode each of the n elements contained

in these partitions, the product of the partitions must be the trivial 0

partition. To illustrate, consider some partitions one might use to

uniquely code the rows of a flow table lettered a through f. If one is

concerned with partitions that can each be described by a binary variable

then each partition should consist of only two blocks. At least three

partitions are needed and two example assignments are shown in Figure 22.

For each assignment let y^, y^ and y^ describe ir^, and respectively.

Since the product of the partitions used in Assignment 1 is not the 0

partition, a unique code does not result for each of the partition

elements when these partitions are used to meike an assignment. Such is

not the case in Assignment 2.

Huffman makes a comment in his paper (5) to the effect that in a

secondary assignment, the Hamming distance of any two rows is unaffected

by complementation of corresponding variables in the two states. This has

a clear interpretation when the assignment is thought of as consisting of

a collection of partitions. For example, ir^ in Assignment 1 of Figure 22

was described by y^ and the first block was coded with a 0, the second

www.manaraa.com

3h

ir^ = {a,b; c,d,e,f}

TTg = {a,c,d; b,e,f} a - 000

ir^ = {a,b,f; c,d,e} b - 010

~ c,d; e; f} c - 101

d - 101

e - 111

f - 110

Assignment 1

T\^ = {a,b; c,d,e,f}

TTg = {a,c,d; b,e,f} a - 000

TT^ = {a,c,e; b,d,f} b - Oil

^X'^2'^3 ~ e; f} c - 100

d - 101

e - 110

f - 111

Assignment 2

Figure 22. Codes defined by two different sets of partitions

with a 1. One could just as well have coded the first block with a 1 and

the second with a 0, which would amount to complementing the column in

the assignment. In other words, there is no distinction between the par

tition TT = a,b; c,d,e,f and the partition ir' = c,d,e,f; a,b . Like

wise, when the partitions are used to construct the assignment, the par

ticular order in which the partitions are introduced is of no consequence.

www.manaraa.com

35

This corresponds to interchanging the columns of an assignment and it is

clear that such manipulations have no effect on the Hamming distances of

the rows. Henceforth, significantly different partitions or assignments

will mean different to within complementation and permutation of the

secondary variables.

B. The Assignment Problem Stated in Terms of Partition Theory

1. A theorem on minimum transition time assignments

The development of minimum transition time secondary assignment

algorithms will begin with a definition, an important theorem and its

corollary.

Definition 10: Consider a Huffman flow table with rows r^, r^,

• • • r . A direct transition from row r. to row r. is a transi-
n 1 j

tion whereby all secondary state variables that are to undergo a

change of state are excited only at the beginning of the transition.

Therefore, a direct transition must be either a race from r^ to r^ or a

cycle of unit length.

Theorem 1: A direct transition from row r^ to row r^ does not

race critically with a direct transition from row r^ to row r^

if and only if a secondary assignment has been made such that

at least one secondary variable, y^, describes the following

partition:

'm = ('i' "•j- ' ' ' ; fk" ' ' •'

Proof: For the first part of the proof it will be assumed that

exists in the assignment and it will be shown that it is impossible for

the transition r. to r. to race critically with the transition r, to r^.
1 J IC X

www.manaraa.com

36

If describes the partition ir^, the assignment must be of the follow

ing general form:

As explained previously, the y^ column could be complemented without

changing the problem since both describe the same partition. According

to Definition 10, in a direct transition all secondary variables that

are to change state must be excited at the beginning of the transition.

Keep in mind that one is not considering here the effect of two transi

tions r^ to r^ and r^ to r^ occurring simultaneously, but rather the

possibility of these two transitions making use of the same spare row.

Now since y^ is shown to be 0 at the beginning and end of the transi

tion r. to r., it will never be excited to a 1 during the entire transi-
1 J

tion. On the other hand, y^ will be a 1 throughout the transition r^ to

r^. Therefore, independent of the Hamming distance between r^ and r^,

or r^ and r^, and independent of the switching times of the excited

variables, the two pairs of transitions will never share the same spare

secondary state.

In the second part of the proof, it will be assumed that does

not exist in the assignment and it will be shown that a transition from

www.manaraa.com

37

to Tj must race critically with a transition from r^ to r^. There are

eight significantly different ways to partition the four rows r^, r^, r^,

and r^ with two-block partitions. These are as follows:

*1 =

"2 ' • ''j'

*3 =

•l. =

'5 ° 'j- 'f

'6 ' t'i' ""j-

*7 = ̂

To = tr., r,,

• ' "j'

; r^.

^k' ̂ 1'

^1'

r,, r.

If ïï^ does not exist in the assignment, one is interested in examining a

largest assignment consisting of all of the above partitions with the

exception of iTg. Let y^^ describe y^ describe ÏÏ̂ , etc. The follow

ing partial assignment results:

?! ' ' ' ymiymZymSymkymSymfrmG ' ' ' fp

r. -
1

0 0 0 0 0 0 0

'j -
0 1 1 0 0 1 1

\ - 0 10 10 0 1

^ 1 -
0 1 0 0 1 1 0

It can be seen that for the columns shown, the transitions r^ to r^ and

r^ to r^ will share the secondary states 01000— where the dashes repre

sent all possible combinations of I's and O's. Therefore, these two

www.manaraa.com

38

transitions race critically with one another. All possible assignments

including these rows r., r , r, and r^ and meeting the conditions of the
1 J ic X

second part of this proof can be shown to be a sub-class of the general

assignment given above. Note that by simply including in this general

assignment, the critical race condition is eliminated.

Of interest, is the following corollary to Theorem 1:

Corollary 1: A direct transition from row r^ to row r^ does

not race critically to r^ if and only if a secondary assignment

has been made such that at least one secondary variable, y^,

describes the following partition:

*m = (fi- --J. • • • ; • • • >

This corollary would be proved very similar to Theorem 1. Just omit from

the proof of Theorem 1, row r^, and retain only those partitions in part

2 of the proof that remain significantly different from each other. There

would be a total of four partitions to consider instead of eight.

2. Construction of the partition list

It is necessary to introduce the concept of an incompletely specified

partition.

Definition 11: An incompletely specified partition, IT, on a set

S is a collection of disjoint subsets of S such that their set

union is not necessarily S but may be another subset of S.

Elements of S that do not appear in ir will be called unspecified

or optional elements with respect to that partition.

As usual, these unspecified elements may be defined in any way one pleases

and will normally be defined in such a way as to bring about a problem

www.manaraa.com

39

simplification. It will not "be necessary in this paper, to define the

product and sum operations for incompletely specified partitions. Such

partitions will be completely specified before any product or sum opera

tion is performed. A modification of the previously defined property of

inequality is necessary for the discussion of incompletely specified

partitions.

Definition 12: Partition ^2 — '^l' ^^ere and ir^ may be

incompletely specified, if and only if all elements specified

in TTg are specified in tt^ and every block of ïï^ is contained

in a block of tt^.

As an illustration of Definition 12, consider the following incom

pletely specified partitions on a set S of eight elements lettered a

through h;

TT^ = {aTb; c%f}

TTg = {a,b,d; c,e,f}

TTg = {a,d; c,e}

From Definition 12 it is clear that ir_ < tt. < ir. and / ïï_.
1 — 2 ' 3 — 2 I f - 3

Now the development of the partition list will be explained with an

illustration. For an example, consider the merged flow table of Figure

23. The transitions under input are c to a, d to e and f to b.

According to Theorem 1, a satisfactory assignment will have to include at

least the incompletely specified partitions, = {a,c; d,e},

TTg = {a,c; b,f} and = {b,f; d,e}. Recall that the ordering of the

variables in a transition is unimportant; if the transition from a to c

can be made non-critically, then so can the transition from c to a. Under

www.manaraa.com

1+0

© "t

® 5

: ©

2 ©

© «

3 ©

Figure 23. Flow table for illustration of partition list

input Ig there are transitions a to d, b to c and e to f. Therefore, the

assignment must also include the partitions, = {a,d; b,c},

TT^ = {a,d; e,f} and ir^ = {b,c; e,f}. A complete listing of all the par

titions that must be included in the secondary assignment will be referred

to hereafter as the partition list for the flow table.

Note that these incompletely specified partitions may be set up on

a per column basis since secondary transitions are always completed within

a single column of the flow table. A very necessary and obvious assump

tion in the design of asynchronous circuits is that a particular input is

always present a sufficient length of time for the circuit to complète its

secondary action.

It remains now to find a set of partitions, t^, t^, • • • that

include the partitions through Hg. Only a set of two-block partitions

is of interest because one can then relate each partition to a secondary

variable and there will be only one essentially different way to code

each partition. The coding of partitions containing more than two blocks

www.manaraa.com

Itl

is an assignment problem in itself. For example, there are three essen

tially different ways to code a four block partition with two binary

variables, just as there are three essentially different ways to code

a four row flow table with two secondary variables. An optimum code has

been defined to be that code with the least number of secondary variables.

Therefore, an attempt will be made to include all the partitions of the

partition list in a minimum number of partitions T. Systematic methods

designed for obtaining this minimum set will be discussed in the next

section. For the present, consider the following partitions:

= {a,b,c; d,e,f}

Tg = {a,c,d; b,e,f}

= {a,d,e; b,c,f}

Clearly, ir^ and Ug are £ t^, and are <_ and ÏÏ^ and are

_< Tg. Alternately, includes and Ug, includes and tt^, and

includes ir^ and ir^^. The coding of these partitions with the secondary

variables y^, y^ and y^ produces the assignment shown in Figure 2h. The

reader may easily verify for himself from the map of the assignment that

all transitions may be accomplished in a minimum amount of time without

critical races. In fact, it turns out in this example that no races are

needed and all transitions may be accomplished with unit cycles.

The set partitions just used for Figure 2 h is not the only set of

three. Partitions = {a,c; b,d,e,f}, = {a,d,e; b,c,f} and

= {a,b,c,d; e,f} work equally well and again all transitions are unit

cycles. It is interesting to look at the following set of four partitions

that may be used to code the same flow table even though it is not minimum:

www.manaraa.com

1+2

a - 0 0 0

b - 0 1 1

c - 0 0 1

d - 1 0 0

e - 1 1 0

f - 1 1 1

%
y^ 00 01 11 10

Figure 2 k , The secondary assignment

= {a,c; b,d,e,f}

Tg = {a,b,c,à; e,f}

= {a,c,d,e; b,f}

Tj^ = {a,d; b,c,e,f}

Again, all the partitions through UG are to some T. Figure 25 shows

the resulting secondary assignment. Observe that in this case there is a

yiygygyt

a - 0 0 0 0

b - 1 0 1 1

c - 0 0 0 1

d - 1 0 0 0

e - 1 1 0 1

f - 1 1 1 1

^3^1+

%
00 01 11 10

00

01

11

10

Figure 25. A non-minimum secondary assignment

www.manaraa.com

k3

mixture of unit cycles and non-critical races; the transition c to a is a

unit cycle but the transition from d to e is a non-critical race over a

Hamming distance of two.

Next, an example will be given that makes use of Corollary 1. Con

sider the flow table and associated partition list shown in Figure 26.

:i '2 S

© 2 9

4 3 ©

©© 8

1 © ©

7 ©®

© © 1 0

"1 =

"3 =

"7 =

^̂ 8 =

{a,d

{a,d

{b,c

Uj

{bid

b,c}

77}

TJ}

b%d}

c"}

e}

c}

e}

Figure 26. Flow table and partition list

This flow table is different from that of Figure 23 in that some transi

tions between states of Figure 26 involve no secondary circuit action;

for example, there is no unstable 5 or unstable 6. Therefore, in Figure

26, one does not need to be concerned with any transition racing critical

ly with a transition to state 5 but one must be careful that other transi

tions under input do not race critically state 5. This implies the

applicability of Corollary 1 and accounts for the incompletely specified

partitions ir^, and ir^ in Figure 26, A minimum set of T partitions

and the corresponding assignment is shown in Figure 27.

www.manaraa.com

Hit

= {a,d,f; b,c,e}

Tg = {a,b,d; c,e,f}

%
y_ 00 01 11 10

= {a,e,f; b,c,d}

Figure 2 J . Partitions and assignment for the flow table
of Figure 26

The last example that will be considered in this section is an in

completely specified flow table in Figure 28. This example serves to

1̂ :2 S

1

2

k 7 10 a

5 8 b

© © 0 c

© © 11 d

6 8 0 e

© - 12 f

TT^ = {a,b

^2 = {a,e

TT^ = {a,c

ïïĵ =' {a,c

TT^ = {b^f

TTg = {a,d

TTy = {a,d

TTg = {a,c

TTG = {A,C

^0 =

C,f}

C,f}

d,e}

bTf}

d,e}

b,c}

c,e}

b,d}

TJ}

e,f}

Figure 28. Incompletely specified flow table and partition
list

illustrate the efficiency of the assignment method in making use not only

of spare secondary rows, but optional entries of the original flow table

as well. Optimum use is also made of what Huffman calls the k-sets of a

www.manaraa.com

45

flow table.

Definition 13: A k-set exists in a single column of the flow

table and consists of all k - 1 unstable entries leading to

the same stable state, together with that stable state.

In the column of the flow table in Figure 28, there is a pair of

transitions b to a and e to a. One need not consider the problem of

these two transitions racing critically since both are in the same k-set

and end in the same stable state. Therefore, there is no incompletely

specified partition in Figure 28 that separates into separate blocks,

the row pairs a,b and a,e. This is fortunate in a sence, because a single

element can appear in only one block of a given partition. Since row d

has an optional entry under I^, element d is not specified in any of the

partitions describing the transitions in the column. The set of t ex

pressions and corresponding assignment appear in Figure 29.

T^={a,c; b,d,e,f}

T2={a,d,e; b,c,f} y^

T2={a,b,d; c,e,f} 0

1

Figure 29. Partitions and assignment for the flow
table in Figure 28

It is clear from the assignment that the optional entry in column I^

will be used in the transition to stable 1 while the optional entry in

column I^ will be used in the transitions to stable 8. Observe from the

map of the assignment that the transition from b to a in column I^ may

^r2

00 01 11 10

www.manaraa.com

46

race through d; so may the transition from e to a. But since both transi

tions are in the same k-set, there will be no conflict of excitations for

d in the excitation matrix. For completeness, the excitation matrix is

shown in Figure 30.

^3 :i ^2 h

000 000 oil 100 oil
001 000 oil oil oil
oil 111 oil oil oil
010 000 oil oil oil
110 000 111 oil 110
111 111 111 oil 101
101 000 100 oil 101
100 000 100 100 110

Figure 30. Excitation matrix for flow table of Figure 28

Summary In this section, partition lists were defined and illus

trated for a variety of flow tables. Six-row flow tables were used

throughout because they were about the right size to illustrate the

principles involved without being too lengthy. The method, in prin

ciple, can be applied to a flow table of any size. A covering set of

partitions was given in each case and the corresponding assignment examined

for correctness. No mention was made of how these covering sets were

obtained, other than possibly by inspection of the partition list. Sys

tematic methods for obtaining these covering partitions will be developed

in the next section.

3. Systematic reduction of the partition list

A convenient way to study the problem of systematic reduction of the

partition list is to convert the partition list to the form of an

www.manaraa.com

1+7

incompletely specified Boolean matrix. The conversion is straight-forward

and will he illustrated with an example. Consider again the flow table of

Figure 23 and its following associated partition list;

= {a,c; d,e}

TTg = {a,c; b,f}

TTj^ = {a,d; b,c}

= {a,d; e,f}

TTg = {b,c; e,f}

These partitions will be listed in abbreviated form as rows of the matrix.

Insteand of showing tt^ = {a,c; d,e}, the partition will be numbered

according to the ir subscript with just a space distinguishing the blocks of

the partition as follows;

1 ac de

The columns will be the complete set of elements appearing in the parti

tion list. Each coordinate of the matrix will contain a 1, 0 or optional

entry as defined by the partition of that row. Figure 31 shows the

Boolean matrix for this example.

a b c d e f
1 a c d e 0 - 0 1 1 -
2 a c b f 0 1 0 - - 1
3 b f d e - 0 - 1 1 0
k ad be 0 1 1 0 - -
5 a d e f 0 - - 0 1 1
6 b c e f - 0 0 - 1 1

Figure 31. Boolean matrix formulation of partition list

www.manaraa.com

48

Arbitrarily, the first block of each partition is coded with a 0 and

the second with a 1. From the previous discussion of partition coding,

it is immaterial whether the first or second block is coded with a 0, and

therefore any or all of the rows of the matrix may be complemented without

altering the problem description.

T. A. Dolotta and E. J. McCluskey, Jr. (2) have studied coding prob

lems 'associated with incompletely specified Boolean matrices. Although

their application is not the same, it will be convenient to use some of

the same terminology. Some applicable definitions, with appropriate modi-

fictions, will be given from their paper. The definitions apply equally

well to columns and rows of a Boolean matrix.

Definition l4: Two columns (rows), F. and F , will have an
1. 0

intersection of and F^, written F\'Fj, if and only if F^

and F. agree wherever both F. and F. are specified. The inter-
J 1 j

section will be defined as a column (row) which agrees with

both F^ and F^ wherever either is specified and contains op

tional entries everywhere else.

Definition 15: Column (row) F^ is said to include column

(row) Fj if and only if F^ agrees with F^ wherever F^ is

specified.

Definition l6: Column (row) F^ is said to cover column

(row) F if and only if either F includes F., or if F
J J ^ 0

includes the complement (F\) of F^.

A consequence of Definition l6 is that any time one discovers two

columns (rows) such that F. covers F , column (row) F. may be discarded.
1 J 1

A Boolean matrix is reduced by replacing pairs of columns (rows)

www.manaraa.com

49

with their intersection as per Definition ll+, discarding columns (rows)

as per Definition l6 and repeating until there are no further reductions.

An obvious problem in the reduction of a matrix is that if it is done on

a step by step basis, and the matrix is large, it is nearly impossible

to tell how to begin so as to obtain an optimum reduction. In the

secondary state assignment problem for asynchronous circuits, one is

usually interested in em assignment with the fewest number of secondary

variables and hence fewest two-block partitions. For the matrix arrange

ment then, one is primarily interested in a reduction that will yield a

minimum or near minimum number of rows.

Consider now some possibilities for the reduction of the Boolean

matrix in Figure 31. One might choose to begin by replacing rows 1 and

3 with their intersection to give the following reduction:

a b c d e f
1 * 3 0 0 0 1 1 0
2 0 1 0 - - 1

h 0 1 1 0 - -

5 0 - - 0 1 1
6 - 0 0 - 1 1

Row 1*3 does not cover any others so next replace 5 and 6 by their inter

section to give

a b c d e f

1'3 0 0 0 1 1 0
2 0 1 0 - - 1

4 0 1 1 0 - -
5*6 0 0 0 0 11

There are no further row intersections and converting back to the parti

tions described by the rows of the reduced matrix we have the completely

specified partitions = {a,b,c,f; d,e}, = {a,b,c,d; e,f} and the

incompletely specified partitions {a,c; b,f}, and = {a,d; b,c}.

www.manaraa.com

50

The codes for each of the rows a through f may be taken as the corres

ponding columns of the reduced matrix. No matter how the optional entries

are filled in, a satisfactory minimum transition time assignment results

and no two rows have the same code.

On the other hand, suppose the matrix of Figure 31 is reduced by

making the following intersections:

a b c d e f
1 * 2 0 1 0 1 1 1
3 ' h 1 0 0 1 1 0
5*6 0 0 0 0 11

In the first reduction, four secondary variables were needed, but in the

second, only three are needed for the assignment. While in this simple

example it is easy to determine an optimum reduction, it should be fairly

obvious that as the size of the matrix increases, and as optional entries

increase, the optimum reduction becomes considerably more difficult to

achieve just by inspection of the matrix.

It might be interesting, before continuing, to investigate the effect

of column reduction. Note that in Figure 31, one may form intersections

of columns a'f, b»d and ce. Let g, h and j represent these intersections

respectively. After forming and substituting these intersections, the

result is

S h ,1
1 0 0 0
2 0 1 0
3 10 0
4 O i l
5 0 1 0
6 0 0 0

Row 1 covers 6, 2 covers 5 and 3 covers 4. If rows 5 and 6 are discard

ed, the reduced matrix is

www.manaraa.com

51

aJLl
1 0 0 0
2 0 1 0
3 10 0

The resulting partitions are

= {g,h,j} = {a,b,d; d,e,f}

Tg = {gTJ; h} = {a,c,d; b,e,f}

Tg = {g; h,J} = {a,d,e; b,c,f}

To illustrate the writing of the partitions in terms of their original

elements, consider from above = {g,h,j}. This can be written as

x^ = {a,f,b,d,c,e}, where the lower bar means a complementation and the

upper bar is the block designation. Since only two-block partitions are

of interest, an element in one block may be shown as its complement in

the other. Therefore one may write x^ = {a,b,c; d,e,f}.

The effect of column reduction is clear. Once it is decided to

replace columns a and f, for instance, with the intersection a*f, one

eliminates from further consideration any partition having elements a and

f in the same block. It so happened in this example that a minimum solu

tion could be obtained by insisting at the outset that elements a and f

always be in different blocks of each assignment partition. The same

was true for element pairs c,e and b,d. If instead, one lets g = a«e,

h = b'd and j = c*f in the matrix of Figure 31, there is no way to reduce

the number of rows to less than four. It has been shown then, what might

have been suspected intuitively; column reduction may often preclude an

optimum row reduction. The column reduction problem is further complicat

ed by the fact that for larger matrices there are often many ways to

reduce the number of columns and it seems impossible to predict which.

www.manaraa.com

52

column reductions will lead to the best row reduction.

Because our primary concern is a minimum row Boolean matrix and

because column reduction may preclude an optimum row reduction, any

further consideration of column reductions will be excluded from the

remainder of this paper. Let it suffice to say that column reduction

will always lead to a usable solution, sometimes a good solution, but

often precludes an optimum solution.

A method will now be presented that will always lead to a minimum

row reduction of a Boolean matrix. The method is similar to that develop

ed by Unger (lO) for the simplification of incompletely specified flow

tables for synchronous sequential switching circuits.

Matrix Reduction Algorithm #1 First some definitions.

Definition 17 : If there exists a row that will cover row

F. and row F. of a Boolean matrix then F. and F, are said to
1 J 1 j

be compatible. Otherwise F^ and F^ are incompatible.

Definition l6 still holds as a definition of what is meant by covering.

An important point concerning Definition 17 is that compatibility is not

a transitive relation. For example, if F^ is compatible with Fj and Fj

is compatible with F^, it does not necessarily follow that F^ is com

patible with F^. Larger compatibles may be built up from smaller ones

by adding rows that are compatible with each member. A compatible which

cannot be added to is called a maximal compatible.

Definition 18: A compatible is maximal if it is not a proper

subset of any other compatible.

The reduction of a Boolean matrix by construction of a set of maximal

compatibles will now be illustrated. , For variety of example, consider

www.manaraa.com

53

the flow table from Figxire 28. The appropriate Boolean matrix is shown

in Figure 32.

a b c d e f
1 ab cf cTo 1 - - 1
2 a e c f 0 — 1 — 0 1
S a c b f 0 1 0 - - 1
I t a c d e 0 - 0 1 1 -
5 b f d e - 0 - 1 1 0
6 ad be 0 1 1 0 - -
7 a d c e 0 - 1 0 1 -
é a c b d 0 1 0 1
9 a c e f 0 - 0 - 1 1

1 0 b d e f - 0 - 0 1 1

Figure 32. Boolean matrix for the flow table of
Figure 28

Following is a list of pairwise compatibles obtained from Figure 32:

(1,2) (1,7) (1,10) (6,7)

(2,5) (2,6) - (7,10)

(3.4) (3,5") (3,8) (3,9) (8,9) (8,10)

(4.5) (4 ,8) (4 ,9) (9,10)

(5 .6)

From the list of pairwise compatibles one may construct the list of

meiximal compatibles. For example, 1 is compatible with 7, 1 is compatible

with 10 and 7 is compatible with 10. Therefore (1,7,10) is a compatible

and we may discard (1,7), (l,10) and (7,10). The compatible (1,7,10) is

also a maximsLl compatible since no other member may be added to the set.

A point to keep in mind is that if F. is compatible with F , then F. is
1 J 1

compatible with F^. Following is a list of maximal compatibles for

this example:

www.manaraa.com

A (1,2)

B (1,7,10)

C (2,5,6)

D (3 ,4 ,8 ,9)

E (3,5)

F (it,5)

G (6,7)

H (8,îô)

J (9,10)

For identification purposes, the maximal compatibles ai-e lettered A

through J. It remains now to select the fewest number of maximal com

patibles that will cover all the rows of the original matrix. It can

be seen almost by inspection, in this example, that one should select

maximal compatibles B, C and D. The partitions themselves can be deter

mined from the intersection of the rows of each compatible. For example,

compatible B corresponds to the intersection of rows 1, 7, and 10 of

Figure 32. Or, one may look at partitions 1, 7, and 10 and see quickly

that the partition identified is x = {a,b,d; c,e,f}. The reduced matrix

and element codes are as follows:

Three secondary variables are needed for the assignment and a code for

each secondary row is shown by the columns of the reduced matrix.

It may not always be as easy to select a minimum number of maximal

compatibles from the complete list of maximal compatibles as it was in

the previous example. A formal method does exist for determining a

minimum set. It is essentially that introduced by Petrick (9) for the

algebraic solution of prime implicant tables in the tabular method of

simplifying Boolean expressions. For each row of the original Boolean

a b c d e f
I'7'IO 0 0 10 11
2 ' 5 ' 6 0 1 1 0 0 1

3 ' 4 ' 8 ' 9 0 1 0 1 1 1

www.manaraa.com

55

matrix, a Boolean expression is written indicating which maximal com

patibles cover that particular row. Thus, in this example, row 1 may

be covered by the maximal compatibles A or B, which is written in

Boolean algebra as A + B. A sum is formed for each row of the matrix

and the product of all these sums indicate how the entire matrix may be

covered. In this example one would have the expression

(A + B)(A + C)(D + E)(D + F)(C + E + F)(C + G)(B + G)

(D + H)(D + J)(B + H + J)

The product of sums expression is converted to the sum of products

expression

BCD + ABDFG + ADFGH + ADFGJ + ACDGH + ACDGJ + ABDEG +

ADEGH + ADEGJ + BCEFHJ + ADFGHJ

The sum of products expression logically states the same thing as the

product of sums expression but in a different way. The number of literals

in each term of the sum of products expression corresponds to the number

of rows in the reduced Boolean matrix. Hence, if one desired a minimum

row reduced matrix he would pick the term BCD. The maximal compatibles

B, C and D are those previously selected by inspection. In some cases

there is more than one minimum row reduced matrix. The algebraic solution

in that case would clearly show all reductions and the designer could,

because of other considerations, possibly pick one over the other. The

example used above did not perhaps best illustrate the power of the alge

braic solution since it turned out that the selected term of the sum of

products expression was considerably smaller than the others. This would

imply that the best solution could probably be determined rather easily

by inspection of the list of maximal compatibles.

www.manaraa.com

56

Matrix Reduction Algorithm #1 may be stimmarized with the following

systematic steps:

1. Examine all pairs of rows of the incompletely specified

Boolean matrix and list those pairs that are compatible.

This is called a list of compatibles.

2. Enlarge each compatible from Step 1 by adding rows that

are compatible with each member. For example, if the list

of pairwise compatibles states that is compatible with

Fj, Fj is compatible with F^ and F^ is compatible with F^,

an enlarged compatible (F., F , F,) can be formed.
1 J K

3. Continue Step 2 until no compatible can be further enlarged.

4. Discard all compatibles that are either identical to other

compatibles or are a proper subset of other compatibles.

The remaining compatibles comprise the list of maximal

compatibles.

5. Determine a least number of maximal compatibles that will

cover all the rows of the original matrix. This may be

done systematically as follows:

a. Letter each maximal compatible for identification.

b. Write the Boolean sum of products expression that

logically states how the entire matrix may be

covered. (See page 55).

c. Convert the Boolean expression to product of sums

form.

d. A term from the Boolean expression containing the

fewest literals describes a least number of maximal

www.manaraa.com

57

compatibles that will cover all rows of the original

matrix.

6. The maximal compatibles selected in Step 5 each describe

an intersection row of the reduced matrix. Furthermore,

each intersection represents one partition to be used in

the secondary assignment.

It should be pointed out that W. Starrett of the Bell Telephone

Laboratories has been reported by linger (lO) to have demonstrated the

feasibility of programming to find a list of maximal compatibles for

synchronous machines with 28 or fewer states. For matrix reduction

then, one would expect to use essentially the same kind of program

for matrices containing 28 or fewer rows.

A serious disadvantage of the algorithm just described is that it

becomes quite lengthy for moderate increases in flow table size. For

example, the author has investigated, among others, a 6-row flow table

that resulted in a lU-row matrix, an 8-row flow table with a 30-row

matrix and a 12-row flow table with a 60-row matrix. Determination of

the pairwise compatibles alone requires an investigation of nl/2(n - 2)I

pairs where n is the number of rows of the merged flow table. In the

case of the l4-row matrix, the complete list of maximal compatibles had

about 20 entries. It was not difficult to obtain what seemed to be a

minimum row reduction from the list of maximal compatibles but an alge

braic solution to prove it was optimum would be quite tedious by hand

computation and was therefore not attempted.

The large increase in work required to obtain an optimum assignment

for a moderate increase in flow table size is not surprising when one

www.manaraa.com

58

considers the number of assignments that exist for a flow table as a

function of its size. Earing (3) presents the following table:

Table 1. Number of secondary assignments as a function of the number
of flow table rows

Number of rows Number of secondary Number of non-degenerate
in flow table variables essentially different

state assignments

2 2 0

3 2 3
3 3 1
1| 2 3
4 3 29
k It 3k
5 3 iko
5 It 1,015
5 5 2,688
6 3 lt20

7 3 8ltO

9 It 10,810,800
10 It 75,675,600
16 It 54,486,432,000

As previously stated essentially different assignments are those exclusive

of assignments obtained by complementation or permutation of the secondary

state variables.

Another factor that makes optimum reduction of the Boolean matrix

difficult to obtain for large matrices is due to the fact that no matter

how many columns appear in the matrix, there are never more than four

entries specified in each row. As more optional entries are introduced,

considerably more possibilities must be examined in order to determine an

optimum reduction.

The author's experience with the above algorithm would indicate that

a list of maximum compatibles can be,conveniently obtained by hand

www.manaraa.com

59

computation when the flow table produces a Boolean matrix of about 15 rows

or less. An algebraic solution to determine a minimum set of maximal com

patibles becomes tedious when the list of maximal compatibles has more

than 10 entries or so. Next, an algorithm that works well for the reduc

tion of up to 60-row Boolean matrices will be developed.

Matrix Reduction Algorithm #2 We have just shown that as flow

tables increase in size it becomes considerably more difficult to obtain

an optimum secondary assignment, in the sense that the fewest number of

secondary variables are required. At least this is certainly the case

using our previous algorithm. No other algorithm is known that will

handle the problem any easier and always produce an optimum assignment.

Therefore, one is lead to the development of an algorithm that may be

used for larger matrices, but cannot be guaranteed to always yield an

optimum reduction. One would expect such an algorithm to be a series

of steps leading to a solution, but with the possibility that as each

step is executed, it is impossible to tell its complete effect on the

final solution.

Algorithm §2 for reducing Boolean matrices is based on the assumption

that for many Boolean matrices, an optimum or near optimum reduction may

be obtained by removing, on a step by step basis, l-arge groups of inter

secting rows. In other words, look for a largest group of intersecting

rows, represent them with their intersection, remove them from the matrix,

and for the part of the matrix remaining, look again for a largest group

of intersecting rows, etc. The algorithm will be stated, illustrated

with an example, and then an attempt will be made to show some of the

reasoning behind the steps. In the algorithm a specified entry is a 1

www.manaraa.com

6o

or 0. The optionalentry (-) is unspecified.

1. Select a column of the Boolean matrix with the largest

number of specified entries and identify it with the

letter A. If several columns have the same largest

number of specified entries, arbitrarily select one of

them.

2. Complement appropriate rows of the matrix so that all

specified entries in the column selected in Step 1

agree.

3. Identify those rows that are not specified under the

column selected in Step 1 with the letter B.

4. Examine each column not identified with an A and deter

mine the difference between the number of I's and O's

in each of these columns. Ignore for this count, those

rows identified with a B or C.

5. Select the column from Step 4 that has the largest dif

ference magnitude. Set that coluiui to a 1 or 0, which

ever was larger, and identify the column with an A.

If several columns have the same largest difference,

arbitrarily select one of them.

6. Examine those rows not identified with a B or C. If a

row does not agree with the setting of the column in

Step 5, identify that row with a C.

7. Consider those rows identified with a B and specified

under the column selected in Step 5. Remove the B

identification from these rows and either complement

www.manaraa.com

them or not complement them so that they will agree with

the selected column setting in Step 5.

8. Go back to Step 4 unless all columns are identified with

an A. If all columns are identified with an A, go to

Step 9.

9. All rows not identified with a C have an intersection.

This intersection represents one of the partitions to

be used in the assignment. Determine this intersection

and remove the covered rows from the matrix. Remove all

identifiers from the remaining matrix and go back to

Step 1. The algorithm is ended when there are no rows

remaining in the matrix.

Now the algorithm will be illustrated with an example. Consider

the example flow table in Figure 33 and its corresponding Boolean matrix

in Figure 3^.

©
2 3 k a

1 5 © T b

8
©

9 12 c

© ©

©

©
 d

10 6 © e

g
© © ©

f

Figure 33. Flow table for algorithm illustration

www.manaraa.com

62

a b c d e f
1 ab cd 0 0 1 1 - -

2 ab ef 0 0 - - 1 1

3 cd ef - - 0 0 1 1
k ac bf 0 1 0 - — 1

5 ac d 0 - 0 1 - -

6 ac e 0 - 0 - 1 -

7 bf d - 0 - 1 - 0
8 bf e - 0 - - 1 0

9 ad be 0 1 - 0 1 -

10 ad cf 0 - 1 0 - 1
11 be df - 0 1 - 0 1
12 ae bd 0 1 - 1 0 -

13 ae cf 0 - 1 - 0 1
Ih bd cf — 0 1 0 — 1

Figure 3h. Boolean matrix for flow table in
Figure 33

The algorithm proceeds as follows:

1. Columns a, b, c and f each have nine specified entries.

Select column a and identify it with an A.

2. No rows need to be complemented,

3. Identify rows 3, T, 8, 11 and lit with a B.

Ij-. Counts of I's and O's must be made for columns b through

f. In column f, for example, there is a count of zero

I's and four O's.

5. Column f is selected, set to a 1, and identified with

an A.

6. All rows not identified with a B or C agree with the set

ting of column f.

7. The B identification is removed from rows 3, T, 8, 11

and l4. Rows 7 and 8 are complemented.

8. Return to Step

I

www.manaraa.com

63

4. Count I's and O's in columns b,c,d and e.

5. Column d is selected and set to a 0, since it has a

maximum count difference with five O's and three I's,

6. Identify rows 1, 5 and 12 with a C, Notice that rows

identified with a C are those that will not be covered

by the partition presently being constructed.

7. No rows are identified with a B,

8. Return to Step it.

At this point the matrix and identifiers appear as follows:

a b c d e f
1 0 0 1 1 - -

2 0 0 - - 1 1

3 - - 0 0 1 1
k 0 1 0 - -o 1

5 0 - 0 1 - —»

6 0 - 0 - 1 -

7 - 1 - 0 - 1
8 - 1 - - 0 1

9 0 1 - 0 1 -

10 0 - 1 0 - 1
11 - 0 1 - 0 1
12 0 1 - 1 0 -

13 0 - 1 - 0 1
lit - 0 1 0 - 1

A A A

If one proceeds through the algorithm until Step 9 is entered, all columns

will have been identified with the letter A. All rows will have been

identified with the letter C except rows 3, 6, 7 and 9. So that the

reader may follow, in case of a tie in Steps 1 or 5, the left-most column

was selected. Therefore, rows 3, 4, 6, 7 and 9 should have lui intersec

tion that in turn determines a partition to cover these rows in the

matrix. This is the case and the resulting partition is = {a,c,d; b,e,f}.

The reader may easily verify that partitions 3, 6, 7 siid. 9 of Figure 3^+

www.manaraa.com

6h

are included in

Let one now go back to Step 1 of the algorithm. The matrix now con

sists of Figure 3̂ exclusive of rows 3, 6, 7 and 9= The process is

continued until we get the partitions and secondary assignment shown

in Figure 35.

= {a,c,d; b,e,f}

Tg = {a,b,d,e; c^f}

Tg = {a,c,e; b,d,f} 00

= {a,b; c,d,e,f} 01

11

10

Figure 35. Partitions and secondary
the flow table in Figure

An attempt will be made now to show the reasoning behind some of the

steps of the algorithm. The main theme of the algorithm is: Given an

incompletely specified Boolean matrix, determine a partition that will

cover the maximum or near maximum number of rows in the matrix. These

covered rows are then discarded and a subset of the original matrix is

considered. One way to arrive at this maximum partition is to determine

one by one, the setting of each individual column, so that a maximum

number of rows are covered. Or alternately, determine the column set

tings in such a manner that a minimum number of rows of the matrix will

be discarded as the setting for each column is established. Since the

%
00 01 11 10

a

e c

d f

b

assignment for

33

www.manaraa.com

intent is to determine the column settings on a step by step basis, the

outcome will be greatly dependent upon which column one starts with.

Hence, in Step 1 the column is selected that will bring a maximum number

of rows into consideration at the beginning of the algorithm. One would

suspect also, that the outcome would be greatly dependent upon the order

in which one determined the setting of the succeeding columns. Therefore,

in Steps 4 and 5 one chooses that column which is most strongly associated

with the already chosen columns and at the same time requires that a rela

tively few number of rows be excluded from further consideration. While

the algorithm always attempts to find a maximum intersection in the matrix,

there is obviously no guarantee that a true maximum is always produced.

However, experience has indicated that at least a near maximum intersection

can be obtained in each case.

An important advantage of this algorithm for the reduction of the

Boolean matrix is that the steps are very systematic, programmable on a

computer and capable of handling relatively large matrices. Matrices of

up to 6o rows have been reduced by hand computation using this algorithm.

It might be pointed out that for all examples presented thus far in this

paper, application of this algorithm for matrix reduction has produced

what seemed to be optimum reductions in every case.

An obvious disadvantage of the algorithm is that there exist matrices

where the optimum reduction or reductions does not include the intersec

tion of the maximum number of rows. The 60-row matrix mentioned earlier

was reduced with the above algorithm to a matrix of 5 rows. The first

intersection covered 27 rows. However, with a little trial and error, a

reduced matrix of 4 rows was obtained and no intersection covered more

www.manaraa.com

66

than 25 rows.

Summary Two algorithms that produce optimum or near optimum row

reductions for incompletely specified Boolean matrices have just been

described. Matrices of 15 rows or less can be optimally reduced by

Reduction Algorithm #1, while matrices of at least 60 rows may be reduced

by Reduction Algorithm #2 with no guarantee that the result is optimum.

The first algorithm has the advantage of producing an optimum solution

butthe disadvantage of becoming quite long and impractical for matrices

of more than 15 rows and does not appear to be easily programmable. The

second algorithm has been used for up to 60-row matrices, could be pro

grammed to handle even more, but has a disadvantage of not necessarily

producing an optimum reduction.

Assignment Method #1

A minimum transition time secondary assignment method, which will be

called Assignment Method #1, is summarized in Figure 36. Each block of

Figure 36 has been discussed in detail. Either Algorithm §1 or §2 may

be used to reduce the Boolean matrix. The reader is aware of the advan

tages and limitations of each.

This assignment method is theoretically applicable for flow tables

of any size, but practically speaking, it is efficient in terms of time

and results for flow tables of about 10 rows or less and can become quite

lengthy for hand computation when working with flow tables of 12 rows or

more. Examples of merged flow tables larger than 12 rows have been rare

in the literature. Recall that a merged flow table of 12 rows could

correspond to a considerably longer primitive flow table. The true

www.manaraa.com

67

Reduced matrix

Partition list

Merged flow table

Boolean matrix

Secondary
assignment

Reduction
Algorithm

Reduction
Algorithm

Figure 36. Summary of Secondary Assignment Method #1

limiting factor in the assignment method is the size of the incompletely

specified Boolean matrix to be reduced. When Reduction Algorithm #2 is

programmed, it may be possible to consider merged flow tables larger

than 12 rows.

5. AssiRnment Method #2

It is advantageous to construct an assignment method that is shorter,

although less efficient in terms of secondary variables, than Method #1.

This will allow one to at least establish an upper bound on the number

of secondary variables needed for a minimum transition time assignment.

www.manaraa.com

68

Let one consider such a method in this section. It will be a modification

of a method due to Liu (6). Liu does not explain his algorithm in terms

of partitions and it seems to be longer and more difficult than it need

be. Assignment Method §2 will be introduced with a definition and theorem.

Definition 19: A column partition is a partition constructed

from a single column of a flow table with each k-set of the

column appearing as a separate block. A column partition may

be either completely or incompletely specified.

As an illustration of Definition 19, consider column of Figure 33.

The column partition is ir = {a,b; c,d; e,f}. This column partition is

completely specified because all elements of the set a through f are

specified in the partition. Incompletely specified column partitions

arise when there are optional entries in the corresponding column of the

flow table.

Theorem 2: A secondary assignment constructed from all the

column partitions of a flow table contains no critical races,

even if all transitions are direct.

Proof: Consider a column of a flow table to contain n k-sets. These

k-sets can be distinguished by the product of two-block partitions

where is the smallest integer ̂ loggn. If the product of these

two-block partitions distinguishes all of the k-sets, then for each

pair of k-sets, n^ and n^, some one of these two-block partitions must

contain n^ and n^ in separate blocks. Transitions can occur only within

k-sets. Assume rows r. and r. of Theorem 1 to be in k-set n and rows
1 j P

r, and r^ to be in k-set n . Now all the conditions of Theorem 1 are
k 1 q

met. Therefore, there are no critical races in the flow table column and

www.manaraa.com

69

all transitions may be accomplished directly.

Since races are always restricted to the columns of a flow table, it

follows that critical races can be avoided in the entire flow table if

all the column partitions are used to construct the secondary assignment.

Clearly, before the column partitions are coded to give the assign

ment, only those partitions that are essentially different should be re

tained. An example will be given to illustrate how efficient this assign

ment method may be for some particular flow tables. This example, shown

in Figure 37, is one for which Caldwell (l) determines a secondary assign

ment but by a technique quite longer and less systematic than our Method

2 .

h ^3

© © 11 15 a

© 7 12 0 b

© 5 - 15 c

© 7 - 13 d

3 © 0 16 e

1 © 11 - f

3 © 9 - g

4 8 0 0 h

- 6 © 16 j

- 8 0 l4 k

2 - 12 © 1
k - 10 0 m

Figure 37. Flow table from Caldwell

www.manaraa.com

70

The column partitions are

TT^ = {a,f; b,l; c,e,g; d,h,m}

TTg = {a,c; b,d,f; e,j; g,h,k}

b,k,l; e,g; h,m}

11^ = {a,c,l; b,d; e,J,m; h,k}

Note that all the column partitions are incompletely specified. Just by

inspection of these column partitions it can be seen that the completely

specified partition = {a,f,j; b,k,l; c,e,g; d,h,m} includes and

and ïïg = {a,c,l; b,d,f; e,j,m; g,h,k} includes ir^ and ttĵ . Therefore, the

coding of the,blocks of and itg will result in a satisfactory minimum

transition time assignment. Two secondary variables are needed to code

each partition for a total of four secondary variables in the assignment.

This is the minimum number of variables one could use to code any 12 row

table. The secondary assignment is shown in Figure 38; y^ and y^ code

TT^, y^ and yj^ code tt^.

y^Ygygyi;

a - 0 0 0 0
b - 0 1 0 1
c - 1 0 0 0
d - 1 1 0 1
e - 1 0 1 0
f - 0 0 0 1
g - 1 0 1 1
h - 1 1 1 1
j - 0 0 1 0
k - 0 1 1 1
1 - 0 1 0 0
m - 1 1 1 0

00

01

11

10

%
00 01 11 10

a 1 c

f b d

k h g

j m e

Figure 38. Secondary assignment for the flow table
in Figure 37

www.manaraa.com

71

The above example illustrated a case where Assignment Method #2

produced a minimum transition time assignment with a minimum number of

secondary variables. If Method #2 were being used in that example to

obtain an upper bound on the number of secondary variables required,

there would be no need to consider any other algorithm because the upper

bound turned out to be the lower bound as well. Unfortunately, Method #2

does not work this well in most cases. Huffman (5) develops in his paper,

a flow table for a reversible counter. The merged flow table consists of

eight rows and if Method #2 is used to code the table, six secondary

variables are required. However, Method #1 produces a code requiring only

three secondary variables.

As a further comparison, consider coding the flow table of Figure 28

with Method #2 and compare that with the assignment shown in Figure 29.

The column partitions are:

TT^ = {a,b,e; c,f}

TTg = {a,c; b,f; d,e}

TT^ = {a,d; b,c,d}

TTj^ = {a,c; b,d; e,f}

It would appear that six state variables are needed to make an assignment.

This number can be reduced by observing that and are covered by

= {a,d; b,d,e,f}

TTg = {a,b,c,f; dTë}

= {a,b,c,d; e,f}

By using these three partitions along with ir^ and tt^, an assignment can

be made using five secondary variables. But Figure 29 shows an assignment

www.manaraa.com

72

with only three secondary variables.

Interestingly enough, there is a close relationship between this

assignment method and Method #1. In terms of the Boolean matrix introduc

ed in Method #1, Method §2 can be thought of as a reduction of that

Boolean matrix on a sectional basis. Each section of the matrix corres

ponding to the transitions in a single column of the flow table is first

reduced, and then the sections are compared with one another in an attempt

to achieve further reduction.

Summary Assignment Method #2 consists of constructing a minimum

transition time assignment from the column partitions of a flow table.

The method may be quite inefficient in terms of the number of secondary

variables. But it is easy to obtain and can be useful as an upper bound

on the number of variables needed to code the flow table. For some flow

tables, the resultant assignment may be considered minimum or near mini

mum with no further investigation required.

6. Assignment Method #3

Here we consider what Liu (6) describes in his paper to be an upper

bound on the number of secondary variables required for a minimum transi

tion time assignment. Liu has shown that a minimum transition time

secondary assignment in which the row assignments correspond to an equi-

disteint error-correcting code contains no critical races. For a 2''^-row

flow table (m an integer) an error-correcting code of 2™ message words is

required. But the code words require 2^ - 1 bits, which corresponds to a

secondary assignment with 2™ - 1 secondary variables. The assignment may

be made independent of the flow table structure, and is usually an effi

cient assignment only for those flow tables where there are transitions

www.manaraa.com

73

between all pairs of rows. Fortunately, most practical 2™-row flow

tables, except perhaps 2-row and 4-row tables, do not have transitions

between all pairs or rows and hence one seldom needs to resort to this

assignment method. For large flow tables the number of secondaries re

quired approach the number of rows in the table.

What one has here then, in Assignment Method #3, is the easiest

method of all to apply, but a method that tends to be very inefficient

in obtaining an optimum code for most flow tables larger than four rows.

As Liu points out though, it is useful as an upper bound assignment.

Caldwell (l) reports a minimum transition time assignment method due

to Huffman. It is based on a row set concept with multiple codes assigned

to each row of the flow table. It differs from Liu's upper bound in that

each transition may be made with a change of only one secondary variable;

but the assignment still requires 2™ - 1 secondary variables for a 2™^row

flow table. Since Hufflnan's method is similar to Liu's in the number of

variables required, Huffman's method will not be considered as a separate

assignment method in this paper.

7. Incompletely merged flow tables

Previous examples were concerned with the coding of merged flow

tables. In some instances, one may be interested in an assignment for

flow tables that have not been completely merged. Maley and Earle (7)

show that if one merges only those rows of the primitive flow table that

have the same output, it is sometimes possible to code the rows in such

a manner that the output is a function of a single secondary variable,

and thus one may save the entire output gating. The result is fewer logic

stages and faster propagation time fro# circuit input to circuit output.

www.manaraa.com

Tit

The assignment methods developed in this paper always yield assignments

free of critical races and always assign a unique code to each row of a

merged flow table. However, if the flow table is not completely merged,

assignments Methods #1 and #2 will still be free of critical races but

there is no guarantee that they will distinguish all rows of the flow

table. Method #3 will always distinguish the rows because the assignment

is made independent of the flow table structure. This will be illustrat

ed with the example primitive flow table of Figure 39.

1 2 3 1+
z z

J.

Q 2 It 3 00

1 © 5 - 01

1 - 6 © 00 ©
 CO 1—1

10

1 2 @ 7 01

1 8 @ 3 00

1 - 5 @ 11

1 ® 6 - 10

Figure 39. Example primitive flow table

A merged flow table for Figure 39, subject to the additional constraint

that the output of merged rows must agree, is shown in Figure ItO. The

application of Assignment Method §1 produces the following partitions

(corresponding to the list of maximal compatibles)and algebraic solution:

www.manaraa.com

75

Il Ig I]

Q 2 H 3

1 ©0 7

1 8 0©

18 0 7

1 - 5 ©

1 (s) 6 _

^1^2

00

01

00

10

11

10

Figure 1*0. Merge of the primitive flow table in Figure 39

t^A = {a,b,e; c,d,f} ADF + BCE + ACEF + BCDF + ABDE

TTg = {a,b,d,e; c,f}

TTç, = {a,b,c; d,e,f}

TT_ = {a,c,f; b,d,e}

TTg = {a,c,d,f; b,e}

TTp = {a,d; b,c,e,f}

If one selects the first term of the algebraic solution, ADF, the result

is three partitions that do not distinguish all the rows of the flow table.

The product of the partitions ir^, and is

^D^F ~ f^ 0. Therefore, rows b and e will have the

same code in the secondary assignment.

On the other hand, the selection of the second term in the algebraic

solution, BCE, does give a set of partitions such that their product is

the 0 partition. If the variables y^, y^ and y^ code the partitions

TTg and TTg respectively, one may write for output expressions, = y^ and

Zg = Yg" If the output code had described partitions ÏÏ̂ and above, it

www.manaraa.com

76

might have been advantageous to choose the assignment given by the third

term of the algebraic expression, even though it involves the use of an

additional secondary variable.

If Matrix Reduction Algorithm §2 in Assignment Method #1 is used,

one does not have available a selection of alternate assignments and

therefore some trial and error may be necessary to come up with an assign

ment that distinguishes all rows. It is sometimes possible to complete

the incompletely specified partitions that may result from Algorithm #2

and thereby arrive at a code. If this doesn't work, one may have to add

partitions solely for the purpose of distinguishing some of the rows.

8. Conclusions and summary

Three minimum transition time assignment methods have been developed

and illustrated. Assignment Method #1 is best in the sense that it pro

duces codes utilizing a minimum or near minimum number of secondary

variables. Its main disadvantage is that it often takes longer to apply

Method #1 than the other two. Method §1 produces incompletely specified

Boolean matrices of up to perhaps 60 rows for a 12-row flo'j table. The

primary limiting factor in the application of Method ifl is the size of

this Boolean matrix. Two algorithms were introduced for the purpose of

systematically reducing such matrices. Matrix Reduction Algorithm #1

yields an optimum code but becomes unwieldy for hand computation in the

case of matrices with more than about 15 rows. Algorithm #2 can handle

matrices with up to about 60 rows but does not guarantee an optimum solu

tion. Experience has shown, however, that an optimum solution is fre

quently obtained and at least a near optimum solution always results.

Matrix Reduction Algorithm §2 is programmable and it is felt that computer

www.manaraa.com

77

solutions could be obtained for matrices considerably larger than 60 rows.

Merged flow tables longer than 12 rows have been rare in the literature.

So even without programming. Assignment Method ^1, coupled with Matrix

Reduction Algorithm #2, can be conveniently used to code nearly all flow

tables of current interest.

Assignment Method §2 is easier to apply, but is less efficient in

terms of secondary variables, than Method §1, Method §2 utilized the

column partitions of a flow table in the secondary state assignment. It

was shown that the set of column partitions always produces an assignment

free of critical races. The column partitions often contain more than

two blocks. The coding of these partitions with more than two blocks is

a state assignment problem in itself. For example, just as there are

three significantly different ways to code a 4-row flow table, there are

also three significantly different ways to code a It-block partition. A

"good" assignment for the column partitions may result in the sharing of

secondary variables between column partitions while a "poor" assignment

may not. This was illustrated on page 71 where it was discovered that

three 2-block partitions could be used to cover two 3-block column parti

tions with the effect of reducing the number of secondary variables by one.

The advantage of Method #2 is that it is relatively quick to apply. The

disadvantage is that it is often difficult to determine a "good" assign

ment for each column partition that will result in an overall "good"

assignment for the complete flow table.

Assignment Method §3 is the simplest of all to apply, but for large

flow tables the resulting code uses an excessively large number of

secondary state variables. For a 2™-^row flow table, 2™ - 1 secondary

www.manaraa.com

78

variables are required. The assignment is simply an equidistant error-

correcting code, a function only of the number of rows in the flow table

and can be assigned independent of the flow table structure.

A good procedure to use in obtaining an assignment is to consider

Method #3 as an upper bound for Method #2 and to consider Methods ^2

and #3 as upper bounds for Method #1.

The assignment methods were designed for merged flow tables. For

unmerged tables, partitions from Method #1 and Method #2 do not necessari

ly completely specify a code for the flow table. It may be necessary in

this case, to add a partition or partitions to distinguish some of the

rows.

www.manaraa.com

79

III. SUMMARY

The paper began with a brief introduction to switching circuits. The

sequential circuit design procedure introduced by Huffman was illustrated

with an example. Special emphasis was placed on the secondary state

assignment aspect of the design procedure. For synchronous sequential

switching circuits, the state assignment problem has been defined in the

literature as: Given the flow table specifications for the synchronous

sequential circuit, select a state assignment that results in a simplest

configuration of combinational logic. But in asynchronous circuits,

primary consideration must be given to the problem of obtaining assign

ments that avoid critical race conditions. Only asynchronous circuits

have been considered in this paper.

One way to avoid critical race conditions in the design of asynchro

nous circuits, is to avoid races altogether. Huffman has described

general secondary assignment methods that do eliminate all races. He has

shown that if minimum transition time is not a requirement, a S^'^-row flow

table can always be satisfactorily coded with 2m - 1 secondary state

variables. For the case where minimum transition time a requirement,

Huffman describes an assignment procedure which requires 2"^ - 1 secondary

state variables for a 2^-row flow table. Both of these assignment methods

result in codes that may be assigned to any flow table, independent of its

algebraic properties.

This paper has been mainly concerned with the development of minimum

transition time assignment algorithms for asynchronous circuits. The re

sulting assignments are dependent upon the flow table structure. As a

consequence, it is often the case that fewer secondary variables are

www.manaraa.com

80

required to code the flow table than if Huffman's assignment was used.

Partition theory is a useful tool in the development of minimum

transition time assignment methods. Theorem 1 conveniently states the

necessary and sufficient conditions for such assignments in terms of the

assignment partitions. On the basis of this theorem, two assignment

methods were developed, Assignment Method #1 and Assignment Method §2.

The third assignment method was essentially that of Huffman's and Liu's

with 2^-1 state variables for a Z^^row flow table.

A characteristic of the codes resulting from the first two assign

ment methods is that all transitions are accomplished by either non-

critical races or unit cycles. Therefore, all transitions are accomplished

in a minimum amount of time. In the third assignment method, all transi

tions are non-critical races for Liu's general assignment method, and all

are unit cycles for Huffman's.

Interestingly enough, for many flow tables, minimum transition time

assignments utilize no more secondary variables than the non-minimum

transition time assignments of Huffman which require 2m - 1 state vari

ables for a 2^^-row flow table. So even when minimum transition time is

not a requirement, it may be worthwhile to investigate assignments pro

duced by Assignment Method #1 and Assignment Method #2.

It was shown that as flow tables increase in number of rows, the

number of essentially different assignments that exist grows at a fan

tastic rate. Because of this, it seems to be the case that as one tries

to achieve a minimum code for larger and larger flow tables, the amount

of effort required also increases at a rapid pace. It is a characteristic

of the assignment methods in this paper that those methods easy to apply

www.manaraa.com

81

often require more than the necessary number of state variables, while;

those that minimize the number of variables tend to become quite long

for large flow tables. An attempt was made to illustrate, with a

variety of examples, this trade-off between optimum code and algorithm

length.

www.manaraa.com

82

IV. BIBLIOGRAPHY

Caldwell, S. H. Switching circuits and logical design. New York,
M.Y., John Wiley and Sons, Inc. 1958.

Dolotta, T. A. and E. J. McCluskey, Jr. Encoding of incompletely
specified Boolean matrices. Western Joint Computer Conference
Proceedings IT: 231-238. 196O.

Haring, D. R. Some aspects of the state assignment problem for
sequential circuits. Massachusetts Institute of Technology
Electronic Systems Laboratory Report ESL-R-l^T. 1962

Hartmanis, J. On the state assignment problem for sequential
machines. I. Institute of Radio Engineers Transactions
on Electronic Computers EC-10: 157-165. 196I.

Huffman, D. A. The synthesis of sequential switching circuits.
In Moore, E. F., ed. Sequential machines; selected papers,
pp. 3-62. Reading, Mass., Addison-Wesley Publishing Co.,
Inc. 196k.

Liu, C. N. A state variable assignment method for asynchronous
sequential switching circuits. Journal of the Association
for Computing Machinery 10: 209-216. 1963.

Maley, G. A. and J. Earle. The logic design of transistor digital
computers. Englewood Cliffs, K.J., Prentice-Hall, Inc. 1963.

Marcus, M. P. Switching circuits for engineers. Englewood Cliffs,
N.J., Prentice-Hall, Inc. 1963.

Petrick, S. R. A direct determination of the irredundant forms of
a Boolean function from the set of prime implicants. U.S. Air
Force Cambridge Research Center Technical Report 56-IIO. 1956.

Unger, S. H. Simplification of state tables. In McCluskey, E. J.,
Jr. and T. C. Bartee, eds. A survey of switching circuit
theory, pp. 145-170. New York, N.Y., McGraw-Hill Book
Company, Inc. I962.

www.manaraa.com

83

V. ACKNOWLEDGMENT

The author is grateful for the advice and encouragement provided by

Professor R. M. Stewart, Jr.

	1964
	Minimum transition time state assignment methods for asynchronous sequential switching circuits
	James Henry Tracey
	Recommended Citation

	tmp.1412025845.pdf.pJ7Zl

