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I. INTRODUCTION 

A. Switching Circuits 

Switching circuits are usually characterized by a "'black box" as 

shown in Figure 1. The switching network is shown with n input lines and 

s ) 

N, 
Switching 

7 

Network 

Figure 1. Block diagram of a switching circuit 

m output lines. In general the input variabels x^, x^,* • • x^ and the 

output variables Z^, Z^, • • • may take on any finite number of values, 

but in this paper it will be assumed that all such variables are binary 

variables. The switching network of Figure 1 is described as a combina

tional switching network if the outputs are functions solely of the inputs. 

In that case one may write 

Zi = Xg. ' ' ' xj 

h ' *2- ' ' ' 'n' 

\ ' V'r ' ' ' 'n' 

On the other hand, if the outputs depend not only on the present 
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input but also on past circuit states, the circuit is described as a 

sequential switching network. A sequential circuit is usually thought of 

as consisting of a combinational circuit plus feedback loops. See Figure 

2, The feedback loops and their associated storage capability (usually a 

delay or flip-flop element) provide the necessary memory for the circuit. 

The feedback variables Y^, Y^, • • • and y^, yg, • • • y^ are commonly 

called secondary variables with the secondary excitations represented by 

Y^, Yg, ' ' « Yp and the secondary states represented by y^, y^, • • • y^. 

Since the next secondary state will be the same as the present secondary 

excitation, it is convenient to refer to the Y's as "next state" variables 

and the y's as "present state"variables. The secondary circuit is said to 

be "stable" when the excitation is the same as the state. The setting 

expressions for the memory elements may be written as functions of the 

x's and y's. If delay is used for memory, the setting variables are the 

Y's themselves, and one may write 

Yi = ^1. yg. • • • yp) 

Ï2 = Sgtxi. Xg. - ' ' yj. y^. • • • yp) 

-p = *2- ' ' ' ^2- • • • 

If the circuit inputs and memory element inputs are gated with clock 

pulses the circuit is called a synchronous sequential circuit. In syn

chronous circuits one may imagine the clock pulses to be numbered so that 

the i-th input combination is the input to the circuit that is gated with 

the i-th clock pulse. 

If no clocking is available the circuit is asynchronous. The i-th 
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Figure 2. Model of a sequential switching circuit 
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input combination for an asynchronous circuit is the input after i changes 

in the input combination. The synchronous circuit recognizes new data 

each clock pulse time while the asynchronous circuit recognizes new in

put data only when there is a change in the data itself. 

As mentioned before, the outputs of a sequential switching circuit 

are dependent on present input and past circuit states. For the general 

case then, one may write the output expressions as 

\ = "it*!. yv yj. • • • Jp) 

h ' ^1' Ï2. • • • Jp' 

\ =2' ' ' ' ^1' ̂ 2. • • • yp> 

In terms of what has been developed thus far,, the secondary state 

assignment problem involves coding the finite number of secondary states 

with combinations of y^, y^, • • ' y^. This can be done in a trivial 

fashion except when constraints are placed on the assignment. In syn

chronous circuits the usual constraint is to make the assigmcent so as to 

minimize the cost of the combinational logic circuit. It is well known 

that the cost of the combinational circuit may more than double if a 

"poor" secondary assignment is used in place of a "good" assignment. 

A primary consideration in asynchronous sequential circuits is to 

make a secondary assignment such that the circuit will function properly 

independent of variations in transmission delays of signals within the 

circuit. Keep in mind that clock pulses are not available here to control 

gating operations in the combinational circuit or in the feedback loop. 

Of course, the cost of the combinational circuit is also important in the 



www.manaraa.com

5 

design of asynchronous sequential circuits but first consideration must 

be given to the elimination of what is later described as dangerous 

"race" conditions. 

This paper is primarily concerned with secondary state assignment 

methods for asynchronous sequential circuits. Assignment methods will be 

developed to insure desired circuit action independent of variations in 

circuit delays. The assignment methods will also be designed so as to 

enable the circuit to accept data at a maximum rate. 

1. Synthesis of asynchronous sequential switching circuits 

In this section, em illustration of the synthesis of an asynchronous 

sequential switching circuit will be given. The models and techniques 

used here are essentially those of Huffman (5). Figure 3 is a block dia

gram of the circuit realization that will be referenced throughout the 

synthesis procedure. The model of Figure 3 is just a slight modification 

of that in Figure 2. Note that delays are used for memory, so the setting 

functions for the memory elements are the secondary excitations variables 

themselves. 

Sequential circuit specifications are usually in the form of a word 

statement, list of input-output sequences or a timing diagram. The syn

thesis procedure can best be explained by fabricating a circuit specifi

cation and illustrating the steps leading to a final circuit synthesis. 

One nay begin with the following specification: A sequential circuit is 

to have two inputs, x^ and x^, and one output, Z. The output, Z, is to 

turn on only when x^ turns on and Z is to turn off only when Xg turns off. 

Only one input variable may change state at a time. 

The first step is to relate the sj)ecifications to a primitive flow 
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table. The primitive flow table is simply a systematic arrangement of the 

problem specifications. One might say that a primitive flow table is to 

sequential circuits as a truth table is to combinational circuits. A 

primitive flow table for this example is shown in Figure i*. 

*1*2 
00 01 11 10 

© 2 - 3  

10 4-

5 - 1. 0 

- 6 0 7 

0 6 - 3  

1 1) 

1 - 8 0  

- 2 0 7 

Figure it. Primitive flow table 

Each of the columns of the flow table represents an input state and each 

row of the table represents an internal or secondary state. The entries 

of the flow table (circled or uncircled) indicate the next secondary 

state. For this reason, a flow table is sometimes called a "next state" 

matrix. For this example, if the circuit is in secondary row k and an 

input combination of x^xg = 01 is presented, the next secondary state will 

be row 6. As long as the input combination remains 01, there will be no 
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further secondary circuit action and for this reason we call the circled 

6 in row 6 a stable state. Thus, the uncircled entries of the flow table 

are called unstable entries and the circled entries are called stable 

entries. The circuit outputs are identified with the stable entries, or 

states, of the table. The dash (-) entries of the table are unspecified 

entries. They resulted from the input restriction that only one input 

variable changes state at a time. Therefore, there is no need to define 

the circuit action for the case of two input variables changing state 

simultaneously. As usual, these optional entries, or "don't cares", may 

be filled in later with any entry one chooses. Later it will be shown 

that proper choices for these optional entries can be an aid in problem 

simplification. 

It is helpful at this point to trace through a particular input 

sequence for the primitive flow table of Figure k. Suppose the circuit 

is presently in stable state 1 with an input = 00 and an output of 

Z = 0. Consider now an input sequence x^x^: GO, 10, 11, 10. When the 

input combination is changed to 10, motion is horizontal in the table to 

unstable 3. I'lext, the secondary circuit changes and goes from unstable 3 

in row 1 to stable 3 in row 3 and there the circuit has an output of 

Z = 1. For the next input the circuit goes to unstable 4 and then to 

stable 4 with an output of Z = 1. For the last input of the sequence it 

goes to unstable 7» stable 7» and an output of Z = 0. Notice that the 

relationship between input and output for this sequence is that specified 

in the original problem specifications. The binary 1 is associated with 

"on" and the binary 0 is associated with "off". 

The next step is a check for redundant stable states. Redundant 
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stable states are sometimes introduced inadvertently during the construc

tion of the primitive flow table because it is not apparent that two 

states are actually equivalent. Systematic techniques for detecting 

equivalent states in a primitive flow table are well known in the litera

ture (1,8). It will suffice here to say that two stable states are 

equivalent if 

(1) They have the same input state, and 

(2) They have the same output state, and 

(3) Each transition from these states, for the same input, 

is either to the same state or equivalent states. 

There are no redundant states in the present example so one may continue. 

A characteristic of the primitive flow table is that there is only 

one stable state to a row and hence the outputs may be directly associated 

with the rows of the flow table. Making a secondary assignment consists 

of coding the rows of the flow table with combinations of y^, yg, • • • y^. 

It would appear that the table in Figure 4 could be coded with at least 

three secondary variables, y^, y^ and y^. Clearly, if this were done, the 

output would be a function solely of these secondary variables. 

By a technique called merging, the output can be made to be a func

tion of the input and secondary state. Merging usually results in a 

shorter flow table and a fewer number of secondary variables to code the 

rows. Two rows of a flow table may be merged if there are no conflicting 

state numbers in corresponding columns of each row. If a state number 

is circled in one of the merging rows, it is circled in the merged row. 

Here is a place where optional entries may be filled in so as to obtain 

an optimum merge. Generally, there is more than one way of merging the 
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rows of a flow table and a merger diagram is helpful in obtaining an 

optimum merge. A merger diagram has as its nodes the numbered rows of 

the flow table and shows all possible mergers of these rows. See Figure 

5 for a merger diagram of the flow table in Figure U. From the merger 

diagram, a suitable merge is determined. Usually one seeks to reduce the 

number of rows in the flow table to a minimum. The idea here is that 

fewer rows in the flow table may result in a need for fewer variables to 

code the secondary states. The merged flow table for the present example 

appears in Figure 6. 

Figure 5. Merger diagram 
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00 01 11 10 

a ©0 1. 3 

b © 6 1, @ 

c 1 @0 T 

d 1 2 0© 

Figure 6. Merged flow table 

The merging was done with no consideration of the output and it may 

no longer be true, in the general case, that each row can now be asso

ciated with a particular output combination. Therefore, circuit outputs 

are usually not shown on the merged flow table. Notice, for this example, 

that the optimum merge happened to be that obtained by merging only rows 

with the same output. This is one case then, where it would be possible 

to show the output combinations on the merged flow table. 

The next step of the synthesis procedure is the secondary assignment. 

Combinations of variables y^, y^, • • • y^ are assigned to distinguish 

the rows of the merged flow table = The problems involved in finding a 

satisfactory assignment will be discussed in some detail in the next sec

tion. For now, what is known to be a satisfactory assignment will be made 

so that the reader may continue on through the remainder of the synthesis 

procedure without loss of continuity. A satisfactory assignment is shown 

in Figure J. 
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Row a - 00 

b - 01 

c - 11 

d - 10 

Figure T. Secondary assignment 

After the secondary assignment is made, the excitation matrix is 

constructed. It was mentioned earlier that the flow table is a next 

state matrix. The construction of the excitation matrix then, amounts to 

replacing the numbered entries of the flow table with appropriate "next 

state" binary codes. As stated previously, the Y*s are "next state" 

variables and therefore the internal entries of the excitation matrix 

are truth values for the Y's. For this reason, the excitation matrix is 

referred to as a Y-map. The Y-map for this example is shown in Figure 8. 

y 1̂ 2 00 01 11 10 

00 00 00 01 01 a 

01 01 11 11 01 b 

11 10 11 11 10 c 

10 00 00 10 10 d 

?1?2 

Figure 8. Excitation matrix or Y-map 
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In the next section we will show that one way of insuring proper operation 

of the final circuit independent of variations in transmission delays, is 

to excite only one secondary variable to change state at a time. There

fore, in the 00 column, row c, of Figure 8, a transition is effected from 

row c to row d and then to row a instead of directly from row c to row a. 

The excitation expressions, and can be conveniently read from 

the Y-map since the presentation is in the form of a Karnaugh map. From 

Figure 8, one may write 

Ï1 = V2 " Vs * Vl 

Ï2 = % + % ̂ % 

Following the excitation matrix, an output matrix is prepared by 

first replacing each stable state in Figure 6 with the appropriate output 

combination from the primitive flow table of Figure 4. This stage of 

development is shown in Figure 9. If output transients are undesirable. 

*1*2 

y^y^ 00 01 11 10 

00 

01 

11 

10 

0 0 

1 1 

1 1 

0 0 

b 

c 

d 

Figure 9. Partly developed output matrix 

the remaining locations of Figure 9 are filled in so that the output will 

change at most once for each change in input. If this restriction is 
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unnecessary in the practical application, one treats these locations as 

"don't care" conditions or optional entries. Figure 10 shows the com

pleted output matrix, or what is sometimes called the Z-map, for the 

case of no output transients allowed. The output expression can be read 

directly from Figure 10 as Z = y^. 

00 01 11 10 

00 0 0 a 

01 1 1 1 1 b 

11 - 1 1 - c 

10 0 0 0 0 d 
Z 

Figure 10. Output matrix or Z-map 

All that remains now is to synthesize the combinational logic for 

Y^, Yg and Z and then complete the feedback loops in accordance with 

Figure 3. The complete logical design is shown in Figure 11. 

Admittedly the steps of the synthesis procedure were rather brief 

in their explanation. For a more thorough treatment the reader is refer

red to the literature (1,7,8). In Figure 12 is a pictorial representation 

of the various parts of the synthesis procedure that have been presented. 
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Figure 11. Logic design of synthesis example 
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Output matrix 

V t 
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Figure 12. Synthesis procedure 

2o The secondary state assignment problem 

In this section a close examination will be made of the secondary 

state assignment problem and the constraints under which the assignment 

must be made. A new merged flow table, different from that used in the 

previous example, will be used to better illustrate the problems involved 

in making a satisfactory assignment. 
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Consider the merged flow table of Figure 13. The input combinations 

© 2 3 a 

5  © 0 ©  ^  
8 6 © c 

1 ©© 7 d 

Figure 13. Merged flow table 

are labeled simply and Ij^ since their binary code is of no par

ticular interest at present. The rows that must be coded with secondary 

state variables are lettered a through d. 

First an attempt will be made to make the same secondary assignment 

for this flow table that was made for the merged flow table in Figure 6, 

a - 00, b - 01, c - 11 and d - 10. Figure lit shows the excitation that 

results from such an assignment. 

^1^2 

- 00 a 

^1^2 

- 00 00 01 10 11 

b - 01 11 01 01 01 

c - 11 11 10 01 11 

d - 10 00 10 10 01 

Figure l4. Excitation matrix 



www.manaraa.com

18 

Consider now the transition from unstable 4 to stable 4 in Figure 13, 

which is the transition from row a to row c under input in Figure 1^4. 

When the circuit is in unstable 4 the situation is as shown in Figure 15. 

^1 = ^ V Delay J Delay = 0 

Y2 = 1 Delay J Delay Yg = 0 

Figure 15. Excitation of secondary state variables 

The secondary state is presently 00 and excitation function is in the 

process of exciting the secondary state to 11. The delays of Figure 15 

are a part of the model in Figure 3. Practically speaking, these delays 

may be thought of as lumped combinational logic delay, amplification in 

the feedback loop to give greater than unity gain, or added delay to 

improve circuit performance. Now if these delays of Figure 15 are of the 

same magnitude, the next secondary state will be 11. However, if the 

delay associated with is longer than the delay associated with Y^, y g 

will be set to 1 before y^ is set to a 1. That means the circuit will 

momentarily find itself in secondary state y^yg = 01. Furthermore, once 

the secondary state becomes 01, Figure l4 shows that the excitation is 

changed to Y^Y^ = 01 and no further secondary action takes place. But 

location y^y^ = Y^Yg = 01 under input Ij^ in Figure iH corresponds to 

stable state T in Figure 13. Ifhat was intended to be a transition from 

row a to row c has ended up in row b because of unequal transmission 

delays in the circuit. Such a circuit malfunction is said to be the 
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result of a critical race condition. It will be convenient at this point 

to list some definitions. 

Definition 1: %en the secondary excitation differs in value 

from the present secondary state in none of the bit positions, 

the circuit is stable. 

Definition 2: When the secondary excitation differs in value 

from the present secondary state in exactly one bit position, 

the circuit is said to be cycling from the present secondary 

state to the secondary state that agrees with the present 

excitation. 

Definition 3: When the secondary excitation differs in value 

from the present secondary state in two or more bit positions 

the circuit is said to be racing from the present secondary 

state to the secondary state that agrees with the present 

excitation. 

Definition If a race condition exists and unequal transmission 

delays can possibly cause the circuit to reach a stable state other 

than the one intended, the race is called a critical race. 

Definition 5: If a race condition exists and unequal transmission 

delays cannot possibly cause the circuit to reach a stable state 

other than the one intended, the race is called a non-critical 

race. 

Quite obviously, critical races should be avoided in the design of an 

asynchronous sequential switching circuit. It might be mentioned here 

that the problem of making a secondary assignment to avoid critical races 

does not exist for the synchronous sequential circuit since gating pulses 
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from a clock are available to control delay and element switching. 

Assignments to eliminate all races One obvious way to avoid the 

introduction of critical races in the circuit design is to eliminate 

races altogether. This can be done by requiring that all transitions be 

made in cyclic or totally sequential fashion. An attempt will be made to 

produce such an assignment for the flow table of Figure 13. 

A helpful tool in accomplishing this type of assignment is the 

transition diagram. Each row of the flow table is represented by a node 

in the transition diagram and each inter-row transition is shown by a 

line joining the appropriate nodes. It has been common in the literature 

to use solid lines for those transitions that must go directly from an 

unstable entry to a stable entry and broken lines for those transitions 

having alternate routes. Alternate routes exist when there is more than 

one unstable entry of the same number. A transition diagram for this 

example is the following: 

a b 

It is clear that the number of secondary variables needed to code 

any n-row flow table must be greater than or equal to log^n. One might 

try to code this flow table with two secondary variables. But if cycles 

are allowed, the transition diagram shows that one must cycle, for 

example, from a to b, a to c and a to d. Cycling on a transition dia

gram corresponds to moving between adjacent squares on a Karnaugh map. 

Recall that two squares are adjacent on a Karnaugh map if only one 
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variable changes state in moving from the one square to the other. What 

is really being said here then, is that if the rows of the flow table, 

lettered a through d, are associated with the squares of a two-variable 

Karnaugh map, it is required that square a to be adjacent to squares b, 

c and d. Obviously this is impossible. However, a satisfactory assign

ment can be made if one increases the number of secondary state variables 

to three. The Karnaugh map is such a convenient way to look at particular 

assignments that it will be used extensively throughout the paper. A 

satisfactory assignment using three secondary variables is shown in map 

foi-m in Figure l6. The letters a, b, c, d correspond to the rows of the 

0 

1 

Figure l6. Karnaugh map of secondary assignment 

flow table in Figure 13 and the upper case letters E, F, G, H are called 

"spare" secondary rows. These spares correspond to optional or "don't 

care" rows in the coded flow table. It may be necessary to fill the 

optional rows in with particular state numbers in order to effect all the 

transitions shown in the transition diagram. It is easy to determine 

whether or not a secondary assignment is satisfactory simply by tracing 

out on the Karnaugh map of the assignment, all transitions shown on the 

00 01 11 10 

a b c E 

F d G H 
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transition diagram. If only cycles are allowed, transitions on the 

Karnaugh map must trace through adjacent squares. But squares passed 

through should be spare rows or the cycle may end in an undesirable 

state. In this example, all transitions may be made according to the 

following list which we will call the transitions specifications: 

ab 

aEc 

aFd 

be 

bd 

cGd 

This list is not unique in that the transition from row a to row c could 

be accomplished as aFHGc. The example flow table with the above secondary 

assignment and transition specifications is shown in Figure 17. A solid 

arrow indicates a cycle. The absence of an arrow leaving an unstable 

state implies a cycle directly to the stable state of the same number. 

It should be pointed out that in preparing and reading the transitions 

specifications the order of the transition is unimportant. In other 

words, once the transition from row a to c is specified as aEc, a trans

ition from row c to a is specified to be cEa. 

The spare states E, F, G and H may be used in more than one transition 

each, although there was no need to consider this possibility in our 

example. It can easily be shown that in general the same spare secondary 

row may be used for all those transition specifications that either begin 

or end in the same row. For example, from Figure l6 one could write 
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Figure IT. Flow table with secondary assignment 

transition specifications aFd and aFHEc for the same flow table. 

Systematic methods for determining assignments with no races are 

well known in the literature (1,5,8). 

Assignments to eliminate only critical races In the previous 

section, an assignment method was discussed that allowed all transitions 

to be made without the introduction of any races. That was one way of 

assuring no circuit malfunctions due to critical races. All transitions 

were cyclic in nature and only one secondary state variable was excited 

at a time during a transition. Now, secondary assignments that allow 

multiple changes of secondary variables will be discussed. Remember 

that when more than one secondary variable is excited, a race condition 

exists. Therefore, one must insure that all races are non-critical. 

The same example flow table will be used with a different secondary 
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assignment to illustrate the use of non-critical races. The flow table 

and assignment appears in Figure l8. It will be demonstrated that all 

^3 

@2 3 ii 

5  © 0 ©  
0  8  6 ©  

1 ®© T 

a % 
b yg 

0 

00 01 11 10 

c 

yg 

0 a F c H 

d 
1 E b G d 

Figure 18. Flow table and secondary assignment 

transitions may be accomplished with non-critical races. One sure test 

as to whether an assignment is workable or not is to construct the excita

tion matrix. Faulty assignments result in an inability to properly con

struct this matrix. In Figure 19 the excitation matrix for this example 

is shown. That part of the matrix for the transition from unstable 5 to 

stable 5 under input I^ will be examined. t^3n the circuit is in unstable 

5, the present secondary state is Oil and the present excitation is 110. 

The excitation is different from the present state in the first and third 

bit positions. If y^ and y^ both change state simultaneously, the circuit 

will go directly from state Oil to state 110. However, if y^ changes 

before y^, the circuit will momentarily be in secondary state 111. There

fore, the secondary state 111 must have the capability of providing the 

proper excitation to carry the transition on through to stable 5. Faulty 
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yiygY] 

a - 000 

E - 001 

b - Oil 

F - 010 

c - 110 

G - 111 

d - 101 

H - 100 

^2 =3 

000 oil 

000 oil 

110 oil 

110 oil 

110 101 

110 101 

000 101 

000 101 

110 110 

oil oil 

oil oil 

110 110 

110 110 

oil oil 

oil oil 

110 Ho 

Figure 19. Excitation matrix 

assignments result in at least one case of conflicting excitations. Such 

is not the case here; an excitation of 110 is shown, the code associated 

with stable state 5, in the spare secondary row G under input I^, 

On the other hand, may change after y^ and the circuit will 

momentarily be in spare F. Therefore, spare F under input must also 

show an excitation of 110. 

It is interesting to note how conveniently all this information is 

displayed in a Karnaugh map of the assignment. Consider the same transi

tion, b to c, on the assignment map in Figure l8. It is easy to see that 

c is a Hamming distance of two from b. In other words, the shortest path 

from b to c through adjacent squares on the map (changing one variable at 

a time) is two squares. The squares involved in the race from b to c are 

all those squares covered, moving cyclicly from b to c, over all paths of 
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length two. The length of the path is taken to he a count of the number 

of squares traversed in moving cyclicly from b to c. These four squares, 

a, F, G, c must all show the same excitation under input in the excita

tion matrix of the example. Since the transition was from a to c, they 

all have an excitation corresponding to secondary state c, or 110. If 

the transition had been from c ̂  a, these locations would all show an 

excitation of 000. 

The above illustration can obviously be generalized for an arbitrary 

race from row r. to row r. under input I, for any flow table assignment. 
1 J ^ 

Let r^ be a Hamming distance of n from row r^. All rows encountered in 

going from r^ to bj- all paths of length n, and including rows r^ and 

r , must show as an excitation, the assigned secondary state of row r.. 
V O 

Clearly, for a distajice n, 2^ rows will have the same excitation. 

There is an important subtlety that must be checked in an assignment 

utilizing races. This can best be explained with a different example. 

Consider an 8 row flow table with rows lettered a through h in which all 

transitions occur except a to b, c to d, e to f and g to h. A single 

column of such a flow table might look like Figure 20. Shown also in 

Figure 20 is a seemingly satisfactory secondary assignment and a partially 

constructed excitation matrix. The problem comes about in filling in a 

proper excitatiçn for spare row L. The race from row c to a is non-

critical but implies that the excitation in L be 0000. The race from f 

to g is also non-critical but implies that the excitation in L be 0101. 

Spare row L can be given just one excitation so the assignment is unsatis

factory- if one insists on races for the transitions c to a and f to g. 

We say in this case, that the transition from c to a races critically 
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Flow table column 

% 

00 01 11 10 

00 

01 

11 

10 

a J d K 

~L g M f 

c N b P 

Q e R h 

yiygygyk 

0000 

0001 

0011 

Q - 0010 

e - 0110 

N - 0111 

g - 0101 

J - 0100 

d - 1100 

B. — 

L -

c -

M - 1101 

b - 1111 

R - 1110 

h - 1010 

P - 1011 

f - 1001 0101 

K - 1000 

Secondary assignment Partial excitation matrix 

Figure 20, Flow table with assignment and partial excitation matrix 

0000 

0000 

0000 

0110 

0110 

0101 

0101 

0101 

0101 

0110 

0110 

1010 

with the transition f to g. This is like the example of Figures 13 and 

l6 with cyclic specifications in that two transitions may make use of the 

same spare only if either the beginning or end of the transition is the 

same row. Thus, for the assignment in Figure 20, we could specify a pair 

of races as a(race)c and g(race)c but not the pair a(race)c and g(race)f 
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unless the a to c and g to f transitions occurred in different columns of 

the flow table. 

In the above example of Figure l8, a secondary assignment was given 

that involved races for all transitions while in the previous example 

with the same flow table, all transitions were accomplished with cycles. 

It is quite possible in many problems to show a mixture of the two. For 

example, it is easy to see from the Karnaugh map of Figure l8 that one 

could choose to cycle from b to F and then to c instead of racing direct

ly from b to c. In fact, it is quite clear that any transition that can 

be accomplished by a non-critical race can also be accomplished with just 

cycles, for the same assignment. 

There is a significant difference between the cyclic assignment and 

the race assignment given for the flow table in Figure 13. The flow table 

and two assignments are repeated in Figure 21 for easy reference. 

Il =2 I3 =4 

Q 2 3 4 

5  © 0 ©  
0 8 6 © 

1 © © T 

V2 

00 01 11 10 
a 

J 

0 a b c E 
b 

c 
1 F d G H 

Assignment 1 (cyclic) 

V2 

y_ 00 01 11 10 

a F c H 

h G d 

Figure 21. Flow table with cyclic and race assignments 
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Consider the transition from row c to d under input for each 

assignment. In Assignment 1 we must first cycle to G and then cycle to 

d while in Assignment 2 we can race directly from c to d. In Assignment 

1, y^ is excited at the beginning of the transition but y^ is not excited 

until the circuit reaches spare row G. But in Assignment 2, both y^ and 

y^ are excited at the beginning of the transition. It is true that in 

Assignment 2 the circuit may momentarily be in a spare secondary state 

F or G, but the point is that all secondaries that are to switch have 

begun to switch prior to arrival at the spare. If a unit of time, T, is 

defined as the longest time required for any one state variable to change, 

the c to d transition in Assignment 1 may require a total transition time 

of 2T while in Assignment 2, the transition will be completed in, at most, 

time T. The first assignment then, requires input information to come at 

a rate no greater than 1/2T while the second will allow the circuit to 

accept information at a rate 1/T. As cycles increase in length for larger 

flow tables, assignments eliminating all races become less attractive in 

terms of circuit speed. An important aspect of the secondary state 

assignment problem is the development of a systematic assignment procedure 

that will allow all transitions to be accomplished in a minimum amount of 

time. This does not preclude the use of any cycles but simply says that 

if cycles are used, they must be of unit length. 

The major contribution of this paper is the development of a minimum 

transition time secondary state assignment algorithm for asynchronous 

sequential circuits. One might wonder why assignments using only cycles 

are of any importance in view of the fact that both assignments in Figure 

21 used the same number of secondary variables. Huffman (5) has shown 
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standard assignments, which we will use as upper bounds, for 2^-row 

(m an integer) flow tables that require 2m - 1 secondary variables for 

cyclic specifications but 2^^ - 1 variables for minimum transition time 

specifications. Therefore, if minimum number of secondary variables is 

a consideration, one might choose an assignment whereby all transitions, 

or most transitions, are accomplished with cycles. This might be par

ticularly true for larger flow tables. 

B. Summary 

In summary, this section serves to introduce design problems asso

ciated with asynchronous sequential switching circuits. The secondary 

state assignment problem and assignment constraints were studied in some 

detail. The characteristics of satisfactory assignments were studied to 

show why one assignment might be preferable over another. General assign

ment methods itere not discussed; assignments were stated and then 

analyzed. Section II will be devoted to the development of algorithms 

for construction of minimum transition time assignment codes. 
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II. PARTITION THEORY RELATED TO THE STATE ASSIGNMENT PROBLEM 

A. Introduction to Partition Theory 

The purpose of this section is to develop algorithms for the con

struction of minimum transition time secondary state assignments for 

asynchronous sequential circuits, A minimum code assignment will be 

defined as that assignment which allows all transitions to be accomplish

ed in a minimum amount of time and uses the fewest number of secondary 

state variables. 

The algorithms developed in this paper are strongly based on the 

concept of partition theory, and therefore a brief introduction to parti

tion theory will be a necessity. Hartmanis (k) is responsible for much of 

the original work in partition theory and his terminology will be used 

throughout this paper. Hartmanis was primarily interested in a solution 

to the state assignment problem for synchronous sequential circuits. It 

will be remembered that the state assignment problem for synchronous cir

cuits is to find an assignment that minimizes the combinational logic 

requirements. As pointed out previously, the problem of avoiding critical 

race conditions need not exist in synchronous circuits. So the applica

tion of partition theory will be quite different here in the case of 

asynchronous circuits where the state assignment problem is defined to 

be that of obtaining assignments that avoid these critical race conditions. 

1. Definitions and illustrations of partition properties 

This section begins with a definition due to Hartmanis. 

Definition 6: A partition n on a set S is a collection of 

disjoint subsets of S such that their set union is S. 
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The subsets of the partition n on S are called the blocks of the 

partition and ir is described by listing these blocks. The partition 

TT = 0 is that partition in which each block consists of a single element; 

the partition ir = I is that partition in which all elements are contained 

in one block. The partitions ÏÏ = 0 and tr = I are called trivial 

partitions. 

As an illustration of what is meant by a partition, consider an 

arbitrary assignment for the following flow table with rows lettered a 

through d: 

a 

b 

c 

d 

One says that the variable y^ determines the partition - a,b; c,d and 

yg determines the partition = a,c; b^d . The elements of partition 

are a, b, c, and d; the blocks are a,b and c,d. Next, it is convenient to 

define some algebraic properties of partitions. 

Definition 7: Partition is ̂  if and only if every 

block of TTg is contained in a block of ÏÏ^. 

The sum of two partitions, + Mg, is defined as follows : 

Definition 8: Two elements a and b are in the same block 

of + TTg if and only if these elements are in the same 

- 00 

- 01 

- 10 

- 11 
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block of ïï^ or ÏÏ^ or both. 

The product of two partitions, is defined as follows: 

Definition 9 '  Two elements a and b are in the same block of 

TT^'Ti^ if and only if they are in the same block of and in 

the same block of 

To illustrate the construction of the product and sum of two parti

tions, consider again ir^ = {a,b; c,d} and = {a,c; b,d}. Then = 

{a; b; c; d} = 0 and + Mg = {a,b,c,d} = I. Clearly, if the partitions 

^1' ̂ 2' * * * ^i uniquely encode each of the n elements contained 

in these partitions, the product of the partitions must be the trivial 0 

partition. To illustrate, consider some partitions one might use to 

uniquely code the rows of a flow table lettered a through f. If one is 

concerned with partitions that can each be described by a binary variable 

then each partition should consist of only two blocks. At least three 

partitions are needed and two example assignments are shown in Figure 22. 

For each assignment let y^, y^ and y^ describe ir^, and respectively. 

Since the product of the partitions used in Assignment 1 is not the 0 

partition, a unique code does not result for each of the partition 

elements when these partitions are used to meike an assignment. Such is 

not the case in Assignment 2. 

Huffman makes a comment in his paper (5) to the effect that in a 

secondary assignment, the Hamming distance of any two rows is unaffected 

by complementation of corresponding variables in the two states. This has 

a clear interpretation when the assignment is thought of as consisting of 

a collection of partitions. For example, ir^ in Assignment 1 of Figure 22 

was described by y^ and the first block was coded with a 0, the second 
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ir^ = {a,b; c,d,e,f} 

TTg = {a,c,d; b,e,f} a - 000 

ir^ = {a,b,f; c,d,e} b - 010 

~ c,d; e; f} c - 101 

d - 101 

e - 111 

f - 110 

Assignment 1 

T\^ = {a,b; c,d,e,f} 

TTg = {a,c,d; b,e,f} a - 000 

TT^ = {a,c,e; b,d,f} b - Oil 

^X'^2'^3 ~ e; f} c - 100 

d - 101 

e - 110 

f - 111 

Assignment 2 

Figure 22. Codes defined by two different sets of partitions 

with a 1. One could just as well have coded the first block with a 1 and 

the second with a 0, which would amount to complementing the column in 

the assignment. In other words, there is no distinction between the par

tition TT = a,b; c,d,e,f and the partition ir' = c,d,e,f; a,b . Like

wise, when the partitions are used to construct the assignment, the par

ticular order in which the partitions are introduced is of no consequence. 
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This corresponds to interchanging the columns of an assignment and it is 

clear that such manipulations have no effect on the Hamming distances of 

the rows. Henceforth, significantly different partitions or assignments 

will mean different to within complementation and permutation of the 

secondary variables. 

B. The Assignment Problem Stated in Terms of Partition Theory 

1. A theorem on minimum transition time assignments 

The development of minimum transition time secondary assignment 

algorithms will begin with a definition, an important theorem and its 

corollary. 

Definition 10: Consider a Huffman flow table with rows r^, r^, 

• • • r . A direct transition from row r. to row r. is a transi-
n 1 j 

tion whereby all secondary state variables that are to undergo a 

change of state are excited only at the beginning of the transition. 

Therefore, a direct transition must be either a race from r^ to r^ or a 

cycle of unit length. 

Theorem 1: A direct transition from row r^ to row r^ does not 

race critically with a direct transition from row r^ to row r^ 

if and only if a secondary assignment has been made such that 

at least one secondary variable, y^, describes the following 

partition: 

'm = ('i' "•j- ' ' ' ; fk" ' ' •' 

Proof: For the first part of the proof it will be assumed that 

exists in the assignment and it will be shown that it is impossible for 

the transition r. to r. to race critically with the transition r, to r^. 
1 J IC X 
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If describes the partition ir^, the assignment must be of the follow

ing general form: 

As explained previously, the y^ column could be complemented without 

changing the problem since both describe the same partition. According 

to Definition 10, in a direct transition all secondary variables that 

are to change state must be excited at the beginning of the transition. 

Keep in mind that one is not considering here the effect of two transi

tions r^ to r^ and r^ to r^ occurring simultaneously, but rather the 

possibility of these two transitions making use of the same spare row. 

Now since y^ is shown to be 0 at the beginning and end of the transi

tion r. to r., it will never be excited to a 1 during the entire transi-
1 J 

tion. On the other hand, y^ will be a 1 throughout the transition r^ to 

r^. Therefore, independent of the Hamming distance between r^ and r^, 

or r^ and r^, and independent of the switching times of the excited 

variables, the two pairs of transitions will never share the same spare 

secondary state. 

In the second part of the proof, it will be assumed that does 

not exist in the assignment and it will be shown that a transition from 
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to Tj must race critically with a transition from r^ to r^. There are 

eight significantly different ways to partition the four rows r^, r^, r^, 

and r^ with two-block partitions. These are as follows: 

*1 = 

"2 ' • ''j' 

*3 = 

•l. = 

'5 ° 'j- 'f 

'6 ' t'i' ""j-

*7 = ̂  

To = tr., r,, 

• ' "j' 

; r^. 

^k' ̂ 1' 

^1' 

r,, r. 

If ïï^ does not exist in the assignment, one is interested in examining a 

largest assignment consisting of all of the above partitions with the 

exception of iTg. Let y^^ describe y^ describe ÏÏ̂ , etc. The follow

ing partial assignment results: 

?! ' ' ' ymiymZymSymkymSymfrmG ' ' ' fp 

r. -
1 

0 0 0 0 0 0 0 

'j -
0  1 1 0  0  1 1  

\ - 0 10 10 0 1 

^ 1 -
0  1 0  0  1 1 0  

It can be seen that for the columns shown, the transitions r^ to r^ and 

r^ to r^ will share the secondary states 01000— where the dashes repre

sent all possible combinations of I's and O's. Therefore, these two 
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transitions race critically with one another. All possible assignments 

including these rows r., r , r, and r^ and meeting the conditions of the 
1 J ic X 

second part of this proof can be shown to be a sub-class of the general 

assignment given above. Note that by simply including in this general 

assignment, the critical race condition is eliminated. 

Of interest, is the following corollary to Theorem 1: 

Corollary 1: A direct transition from row r^ to row r^ does 

not race critically to r^ if and only if a secondary assignment 

has been made such that at least one secondary variable, y^, 

describes the following partition: 

*m = (fi- --J. • • • ; • • • > 

This corollary would be proved very similar to Theorem 1. Just omit from 

the proof of Theorem 1, row r^, and retain only those partitions in part 

2 of the proof that remain significantly different from each other. There 

would be a total of four partitions to consider instead of eight. 

2. Construction of the partition list 

It is necessary to introduce the concept of an incompletely specified 

partition. 

Definition 11: An incompletely specified partition, IT, on a set 

S is a collection of disjoint subsets of S such that their set 

union is not necessarily S but may be another subset of S. 

Elements of S that do not appear in ir will be called unspecified 

or optional elements with respect to that partition. 

As usual, these unspecified elements may be defined in any way one pleases 

and will normally be defined in such a way as to bring about a problem 
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simplification. It will not "be necessary in this paper, to define the 

product and sum operations for incompletely specified partitions. Such 

partitions will be completely specified before any product or sum opera

tion is performed. A modification of the previously defined property of 

inequality is necessary for the discussion of incompletely specified 

partitions. 

Definition 12: Partition ^2 — '^l' ^^ere and ir^ may be 

incompletely specified, if and only if all elements specified 

in TTg are specified in tt^ and every block of ïï^ is contained 

in a block of tt^. 

As an illustration of Definition 12, consider the following incom

pletely specified partitions on a set S of eight elements lettered a 

through h; 

TT^ = {aTb; c%f} 

TTg = {a,b,d; c,e,f} 

TTg = {a,d; c,e} 

From Definition 12 it is clear that ir_ < tt. < ir. and / ïï_. 
1 — 2 '  3 — 2  I f -  3  

Now the development of the partition list will be explained with an 

illustration. For an example, consider the merged flow table of Figure 

23. The transitions under input are c to a, d to e and f to b. 

According to Theorem 1, a satisfactory assignment will have to include at 

least the incompletely specified partitions, = {a,c; d,e}, 

TTg = {a,c; b,f} and = {b,f; d,e}. Recall that the ordering of the 

variables in a transition is unimportant; if the transition from a to c 

can be made non-critically, then so can the transition from c to a. Under 
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Figure 23. Flow table for illustration of partition list 

input Ig there are transitions a to d, b to c and e to f. Therefore, the 

assignment must also include the partitions, = {a,d; b,c}, 

TT^ = {a,d; e,f} and ir^ = {b,c; e,f}. A complete listing of all the par

titions that must be included in the secondary assignment will be referred 

to hereafter as the partition list for the flow table. 

Note that these incompletely specified partitions may be set up on 

a per column basis since secondary transitions are always completed within 

a single column of the flow table. A very necessary and obvious assump

tion in the design of asynchronous circuits is that a particular input is 

always present a sufficient length of time for the circuit to complète its 

secondary action. 

It remains now to find a set of partitions, t^, t^, • • • that 

include the partitions through Hg. Only a set of two-block partitions 

is of interest because one can then relate each partition to a secondary 

variable and there will be only one essentially different way to code 

each partition. The coding of partitions containing more than two blocks 
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is an assignment problem in itself. For example, there are three essen

tially different ways to code a four block partition with two binary 

variables, just as there are three essentially different ways to code 

a four row flow table with two secondary variables. An optimum code has 

been defined to be that code with the least number of secondary variables. 

Therefore, an attempt will be made to include all the partitions of the 

partition list in a minimum number of partitions T. Systematic methods 

designed for obtaining this minimum set will be discussed in the next 

section. For the present, consider the following partitions: 

= {a,b,c; d,e,f} 

Tg = {a,c,d; b,e,f} 

= {a,d,e; b,c,f} 

Clearly, ir^ and Ug are £ t^, and are <_ and ÏÏ^ and are 

_< Tg. Alternately, includes and Ug, includes and tt^, and 

includes ir^ and ir^^. The coding of these partitions with the secondary 

variables y^, y^ and y^ produces the assignment shown in Figure 2h. The 

reader may easily verify for himself from the map of the assignment that 

all transitions may be accomplished in a minimum amount of time without 

critical races. In fact, it turns out in this example that no races are 

needed and all transitions may be accomplished with unit cycles. 

The set partitions just used for Figure 2 h  is not the only set of 

three. Partitions = {a,c; b,d,e,f}, = {a,d,e; b,c,f} and 

= {a,b,c,d; e,f} work equally well and again all transitions are unit 

cycles. It is interesting to look at the following set of four partitions 

that may be used to code the same flow table even though it is not minimum: 
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a - 0 0 0 

b - 0 1 1 

c - 0 0 1 

d - 1 0 0 

e - 1 1 0 

f - 1 1 1 

% 
y^ 00 01 11 10 

Figure 2 k ,  The secondary assignment 

= {a,c; b,d,e,f} 

Tg = {a,b,c,à; e,f} 

= {a,c,d,e; b,f} 

Tj^ = {a,d; b,c,e,f} 

Again, all the partitions through UG are to some T. Figure 25 shows 

the resulting secondary assignment. Observe that in this case there is a 

yiygygyt 

a - 0 0 0 0 

b - 1 0 1 1 

c - 0 0 0 1 

d - 1 0 0 0 

e - 1 1 0 1 

f - 1 1 1 1 

^3^1+ 

% 
00 01 11 10 

00 

01 

11 

10 

Figure 25. A non-minimum secondary assignment 
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mixture of unit cycles and non-critical races; the transition c to a is a 

unit cycle but the transition from d to e is a non-critical race over a 

Hamming distance of two. 

Next, an example will be given that makes use of Corollary 1. Con

sider the flow table and associated partition list shown in Figure 26. 

:i '2 S 

© 2 9 

4 3 © 

©© 8 

1  © ©  

7 ©® 

© © 1 0  

"1 = 

"3 = 

"7 = 

^̂ 8 = 

{a,d 

{a,d 

{b,c 

Uj 

{bid 

b,c} 

77} 

TJ} 

b%d} 

c"} 

e} 

c} 

e} 

Figure 26.  Flow table and partition list 

This flow table is different from that of Figure 23 in that some transi

tions between states of Figure 26 involve no secondary circuit action; 

for example, there is no unstable 5 or unstable 6. Therefore, in Figure 

26, one does not need to be concerned with any transition racing critical

ly with a transition to state 5 but one must be careful that other transi

tions under input do not race critically state 5. This implies the 

applicability of Corollary 1 and accounts for the incompletely specified 

partitions ir^, and ir^ in Figure 26, A minimum set of T partitions 

and the corresponding assignment is shown in Figure 27. 
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= {a,d,f; b,c,e} 

Tg = {a,b,d; c,e,f} 

% 
y_ 00 01 11 10 

= {a,e,f; b,c,d} 

Figure 2 J .  Partitions and assignment for the flow table 
of Figure 26 

The last example that will be considered in this section is an in

completely specified flow table in Figure 28. This example serves to 

1̂ :2 S 

1 

2 

k 7 10 a 

5 8 b 

© © 0 c 

© © 11 d 

6 8 0 e 

© - 12 f 

TT^ = {a,b 

^2 = {a,e 

TT^ = {a,c 

ïïĵ  =' {a,c 

TT^ = {b^f 

TTg = {a,d 

TTy = {a,d 

TTg = {a,c 

TTG = {A,C 

^0 = 

C,f} 

C,f} 

d,e} 

bTf} 

d,e} 

b,c} 

c,e} 

b,d} 

TJ} 

e,f} 

Figure 28. Incompletely specified flow table and partition 
list 

illustrate the efficiency of the assignment method in making use not only 

of spare secondary rows, but optional entries of the original flow table 

as well. Optimum use is also made of what Huffman calls the k-sets of a 
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flow table. 

Definition 13: A k-set exists in a single column of the flow 

table and consists of all k - 1 unstable entries leading to 

the same stable state, together with that stable state. 

In the column of the flow table in Figure 28, there is a pair of 

transitions b to a and e to a. One need not consider the problem of 

these two transitions racing critically since both are in the same k-set 

and end in the same stable state. Therefore, there is no incompletely 

specified partition in Figure 28 that separates into separate blocks, 

the row pairs a,b and a,e. This is fortunate in a sence, because a single 

element can appear in only one block of a given partition. Since row d 

has an optional entry under I^, element d is not specified in any of the 

partitions describing the transitions in the column. The set of t ex

pressions and corresponding assignment appear in Figure 29. 

T^={a,c; b,d,e,f} 

T2={a,d,e; b,c,f} y^ 

T2={a,b,d; c,e,f} 0 

1 

Figure 29. Partitions and assignment for the flow 
table in Figure 28 

It is clear from the assignment that the optional entry in column I^ 

will be used in the transition to stable 1 while the optional entry in 

column I^ will be used in the transitions to stable 8. Observe from the 

map of the assignment that the transition from b to a in column I^ may 

^r2 

00 01 11 10 
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race through d; so may the transition from e to a. But since both transi

tions are in the same k-set, there will be no conflict of excitations for 

d in the excitation matrix. For completeness, the excitation matrix is 

shown in Figure 30. 

^3 :i ^2 h 

000 000 oil 100 oil 
001 000 oil oil oil 
oil 111 oil oil oil 
010 000 oil oil oil 
110 000 111 oil 110 
111 111 111 oil 101 
101 000 100 oil 101 
100 000 100 100 110 

Figure 30. Excitation matrix for flow table of Figure 28 

Summary In this section, partition lists were defined and illus

trated for a variety of flow tables. Six-row flow tables were used 

throughout because they were about the right size to illustrate the 

principles involved without being too lengthy. The method, in prin

ciple, can be applied to a flow table of any size. A covering set of 

partitions was given in each case and the corresponding assignment examined 

for correctness. No mention was made of how these covering sets were 

obtained, other than possibly by inspection of the partition list. Sys

tematic methods for obtaining these covering partitions will be developed 

in the next section. 

3. Systematic reduction of the partition list 

A convenient way to study the problem of systematic reduction of the 

partition list is to convert the partition list to the form of an 
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incompletely specified Boolean matrix. The conversion is straight-forward 

and will he illustrated with an example. Consider again the flow table of 

Figure 23 and its following associated partition list; 

= {a,c; d,e} 

TTg = {a,c; b,f} 

TTj^ = {a,d; b,c} 

= {a,d; e,f} 

TTg = {b,c; e,f} 

These partitions will be listed in abbreviated form as rows of the matrix. 

Insteand of showing tt^ = {a,c; d,e}, the partition will be numbered 

according to the ir subscript with just a space distinguishing the blocks of 

the partition as follows; 

1 ac de 

The columns will be the complete set of elements appearing in the parti

tion list. Each coordinate of the matrix will contain a 1, 0 or optional 

entry as defined by the partition of that row. Figure 31 shows the 

Boolean matrix for this example. 

a b c d e f 
1  a c  d e  0 - 0 1 1 -
2 a c b f  0 1 0 - - 1  
3  b f  d e  - 0 - 1 1 0  
k ad be 0 1 1 0 - -
5 a d e f  0  -  -  0  1  1  
6 b c e f  - 0 0 - 1 1  

Figure 31. Boolean matrix formulation of partition list 
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Arbitrarily, the first block of each partition is coded with a 0 and 

the second with a 1. From the previous discussion of partition coding, 

it is immaterial whether the first or second block is coded with a 0, and 

therefore any or all of the rows of the matrix may be complemented without 

altering the problem description. 

T. A. Dolotta and E. J. McCluskey, Jr. (2) have studied coding prob

lems 'associated with incompletely specified Boolean matrices. Although 

their application is not the same, it will be convenient to use some of 

the same terminology. Some applicable definitions, with appropriate modi-

fictions, will be given from their paper. The definitions apply equally 

well to columns and rows of a Boolean matrix. 

Definition l4: Two columns (rows), F. and F , will have an 
1. 0 

intersection of and F^, written F\'Fj, if and only if F^ 

and F. agree wherever both F. and F. are specified. The inter-
J 1 j 

section will be defined as a column (row) which agrees with 

both F^ and F^ wherever either is specified and contains op

tional entries everywhere else. 

Definition 15: Column (row) F^ is said to include column 

(row) Fj if and only if F^ agrees with F^ wherever F^ is 

specified. 

Definition l6: Column (row) F^ is said to cover column 

(row) F if and only if either F includes F., or if F 
J J ^ 0 

includes the complement (F\) of F^. 

A consequence of Definition l6 is that any time one discovers two 

columns (rows) such that F. covers F , column (row) F. may be discarded. 
1 J 1 

A Boolean matrix is reduced by replacing pairs of columns (rows) 
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with their intersection as per Definition ll+, discarding columns (rows) 

as per Definition l6 and repeating until there are no further reductions. 

An obvious problem in the reduction of a matrix is that if it is done on 

a step by step basis, and the matrix is large, it is nearly impossible 

to tell how to begin so as to obtain an optimum reduction. In the 

secondary state assignment problem for asynchronous circuits, one is 

usually interested in em assignment with the fewest number of secondary 

variables and hence fewest two-block partitions. For the matrix arrange

ment then, one is primarily interested in a reduction that will yield a 

minimum or near minimum number of rows. 

Consider now some possibilities for the reduction of the Boolean 

matrix in Figure 31. One might choose to begin by replacing rows 1 and 

3 with their intersection to give the following reduction: 

a b c d e f 
1 * 3  0  0  0  1 1 0  
2 0 1 0 - - 1 

h 0 1 1 0 - -

5 0 - - 0 1 1 
6  - 0 0 - 1 1  

Row 1*3 does not cover any others so next replace 5 and 6 by their inter

section to give 

a b c d e f 

1'3 0 0 0 1 1 0 
2 0 1 0 - - 1 

4 0 1 1 0 - -
5*6 0 0 0 0 11 

There are no further row intersections and converting back to the parti

tions described by the rows of the reduced matrix we have the completely 

specified partitions = {a,b,c,f; d,e}, = {a,b,c,d; e,f} and the 

incompletely specified partitions {a,c; b,f}, and = {a,d; b,c}. 
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The codes for each of the rows a through f may be taken as the corres

ponding columns of the reduced matrix. No matter how the optional entries 

are filled in, a satisfactory minimum transition time assignment results 

and no two rows have the same code. 

On the other hand, suppose the matrix of Figure 31 is reduced by 

making the following intersections: 

a b c d e f 
1 * 2  0  1 0  1 1 1  
3 ' h  1 0  0  1 1 0  
5*6 0 0 0 0 11 

In the first reduction, four secondary variables were needed, but in the 

second, only three are needed for the assignment. While in this simple 

example it is easy to determine an optimum reduction, it should be fairly 

obvious that as the size of the matrix increases, and as optional entries 

increase, the optimum reduction becomes considerably more difficult to 

achieve just by inspection of the matrix. 

It might be interesting, before continuing, to investigate the effect 

of column reduction. Note that in Figure 31, one may form intersections 

of columns a'f, b»d and ce. Let g, h and j represent these intersections 

respectively. After forming and substituting these intersections, the 

result is 

S h ,1 
1 0  0  0  
2  0  1 0  
3 10 0 
4  O i l  
5  0  1 0  
6 0 0 0 

Row 1 covers 6, 2 covers 5 and 3 covers 4. If rows 5 and 6 are discard

ed, the reduced matrix is 
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aJLl 
1 0 0 0 
2  0  1 0  
3 10 0 

The resulting partitions are 

= {g,h,j} = {a,b,d; d,e,f} 

Tg = {gTJ; h} = {a,c,d; b,e,f} 

Tg = {g; h,J} = {a,d,e; b,c,f} 

To illustrate the writing of the partitions in terms of their original 

elements, consider from above = {g,h,j}. This can be written as 

x^ = {a,f,b,d,c,e}, where the lower bar means a complementation and the 

upper bar is the block designation. Since only two-block partitions are 

of interest, an element in one block may be shown as its complement in 

the other. Therefore one may write x^ = {a,b,c; d,e,f}. 

The effect of column reduction is clear. Once it is decided to 

replace columns a and f, for instance, with the intersection a*f, one 

eliminates from further consideration any partition having elements a and 

f in the same block. It so happened in this example that a minimum solu

tion could be obtained by insisting at the outset that elements a and f 

always be in different blocks of each assignment partition. The same 

was true for element pairs c,e and b,d. If instead, one lets g = a«e, 

h = b'd and j = c*f in the matrix of Figure 31, there is no way to reduce 

the number of rows to less than four. It has been shown then, what might 

have been suspected intuitively; column reduction may often preclude an 

optimum row reduction. The column reduction problem is further complicat

ed by the fact that for larger matrices there are often many ways to 

reduce the number of columns and it seems impossible to predict which. 
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column reductions will lead to the best row reduction. 

Because our primary concern is a minimum row Boolean matrix and 

because column reduction may preclude an optimum row reduction, any 

further consideration of column reductions will be excluded from the 

remainder of this paper. Let it suffice to say that column reduction 

will always lead to a usable solution, sometimes a good solution, but 

often precludes an optimum solution. 

A method will now be presented that will always lead to a minimum 

row reduction of a Boolean matrix. The method is similar to that develop

ed by Unger (lO) for the simplification of incompletely specified flow 

tables for synchronous sequential switching circuits. 

Matrix Reduction Algorithm #1 First some definitions. 

Definition 17 : If there exists a row that will cover row 

F. and row F. of a Boolean matrix then F. and F, are said to 
1 J 1 j 

be compatible. Otherwise F^ and F^ are incompatible. 

Definition l6 still holds as a definition of what is meant by covering. 

An important point concerning Definition 17 is that compatibility is not 

a transitive relation. For example, if F^ is compatible with Fj and Fj 

is compatible with F^, it does not necessarily follow that F^ is com

patible with F^. Larger compatibles may be built up from smaller ones 

by adding rows that are compatible with each member. A compatible which 

cannot be added to is called a maximal compatible. 

Definition 18: A compatible is maximal if it is not a proper 

subset of any other compatible. 

The reduction of a Boolean matrix by construction of a set of maximal 

compatibles will now be illustrated. , For variety of example, consider 
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the flow table from Figxire 28. The appropriate Boolean matrix is shown 

in Figure 32. 

a b c d e f 
1 ab cf cTo 1 - - 1 
2  a e  c f  0 — 1 — 0 1  
S a c b f  0 1 0 - - 1  
I t a c d e  0 - 0 1 1 -
5 b f d e  - 0 - 1 1 0  
6 ad be 0 1 1 0 - -
7  a d  c e  0 - 1 0 1 -
é a c b d  0 1 0 1  
9 a c e f  0 - 0 - 1 1  

1 0  b d  e f  - 0 - 0 1 1  

Figure 32. Boolean matrix for the flow table of 
Figure 28 

Following is a list of pairwise compatibles obtained from Figure 32: 

(1,2) (1,7) (1,10) (6,7) 

(2,5) (2,6) - (7,10) 

(3.4) (3,5") (3,8) (3,9) (8,9) (8,10) 

(4.5) (4 ,8 )  (4 ,9 )  (9,10) 

(5 .6 )  

From the list of pairwise compatibles one may construct the list of 

meiximal compatibles. For example, 1 is compatible with 7, 1 is compatible 

with 10 and 7 is compatible with 10. Therefore (1,7,10) is a compatible 

and we may discard (1,7), (l,10) and (7,10). The compatible (1,7,10) is 

also a maximsLl compatible since no other member may be added to the set. 

A point to keep in mind is that if F. is compatible with F , then F. is 
1 J 1 

compatible with F^. Following is a list of maximal compatibles for 

this example: 
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A (1,2) 

B (1,7,10) 

C (2,5,6) 

D (3 ,4 ,8 ,9 )  

E (3,5) 

F (it,5) 

G (6,7) 

H (8,îô) 

J (9,10) 

For identification purposes, the maximal compatibles ai-e lettered A 

through J. It remains now to select the fewest number of maximal com

patibles that will cover all the rows of the original matrix. It can 

be seen almost by inspection, in this example, that one should select 

maximal compatibles B, C and D. The partitions themselves can be deter

mined from the intersection of the rows of each compatible. For example, 

compatible B corresponds to the intersection of rows 1, 7, and 10 of 

Figure 32. Or, one may look at partitions 1, 7, and 10 and see quickly 

that the partition identified is x = {a,b,d; c,e,f}. The reduced matrix 

and element codes are as follows: 

Three secondary variables are needed for the assignment and a code for 

each secondary row is shown by the columns of the reduced matrix. 

It may not always be as easy to select a minimum number of maximal 

compatibles from the complete list of maximal compatibles as it was in 

the previous example. A formal method does exist for determining a 

minimum set. It is essentially that introduced by Petrick (9) for the 

algebraic solution of prime implicant tables in the tabular method of 

simplifying Boolean expressions. For each row of the original Boolean 

a b c d e f 
I'7'IO 0 0 10 11 
2 ' 5 ' 6  0  1 1 0  0  1  

3 ' 4 ' 8 ' 9  0  1 0  1 1 1  
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matrix, a Boolean expression is written indicating which maximal com

patibles cover that particular row. Thus, in this example, row 1 may

be covered by the maximal compatibles A or B, which is written in 

Boolean algebra as A + B. A sum is formed for each row of the matrix 

and the product of all these sums indicate how the entire matrix may be 

covered. In this example one would have the expression 

(A + B)(A + C)(D + E)(D + F)(C + E + F)(C + G)(B + G) 

(D + H)(D + J)(B + H + J) 

The product of sums expression is converted to the sum of products 

expression 

BCD + ABDFG + ADFGH + ADFGJ + ACDGH + ACDGJ + ABDEG + 

ADEGH + ADEGJ + BCEFHJ + ADFGHJ 

The sum of products expression logically states the same thing as the 

product of sums expression but in a different way. The number of literals 

in each term of the sum of products expression corresponds to the number 

of rows in the reduced Boolean matrix. Hence, if one desired a minimum 

row reduced matrix he would pick the term BCD. The maximal compatibles 

B, C and D are those previously selected by inspection. In some cases 

there is more than one minimum row reduced matrix. The algebraic solution 

in that case would clearly show all reductions and the designer could, 

because of other considerations, possibly pick one over the other. The 

example used above did not perhaps best illustrate the power of the alge

braic solution since it turned out that the selected term of the sum of 

products expression was considerably smaller than the others. This would 

imply that the best solution could probably be determined rather easily 

by inspection of the list of maximal compatibles. 
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Matrix Reduction Algorithm #1 may be stimmarized with the following 

systematic steps: 

1. Examine all pairs of rows of the incompletely specified 

Boolean matrix and list those pairs that are compatible. 

This is called a list of compatibles. 

2. Enlarge each compatible from Step 1 by adding rows that 

are compatible with each member. For example, if the list 

of pairwise compatibles states that is compatible with 

Fj, Fj is compatible with F^ and F^ is compatible with F^, 

an enlarged compatible (F., F , F, ) can be formed. 
1 J K 

3. Continue Step 2 until no compatible can be further enlarged. 

4. Discard all compatibles that are either identical to other 

compatibles or are a proper subset of other compatibles. 

The remaining compatibles comprise the list of maximal 

compatibles. 

5. Determine a least number of maximal compatibles that will 

cover all the rows of the original matrix. This may be 

done systematically as follows: 

a. Letter each maximal compatible for identification. 

b. Write the Boolean sum of products expression that 

logically states how the entire matrix may be 

covered. (See page 55). 

c. Convert the Boolean expression to product of sums 

form. 

d. A term from the Boolean expression containing the 

fewest literals describes a least number of maximal 
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compatibles that will cover all rows of the original 

matrix. 

6. The maximal compatibles selected in Step 5 each describe 

an intersection row of the reduced matrix. Furthermore, 

each intersection represents one partition to be used in 

the secondary assignment. 

It should be pointed out that W. Starrett of the Bell Telephone 

Laboratories has been reported by linger (lO) to have demonstrated the 

feasibility of programming to find a list of maximal compatibles for 

synchronous machines with 28 or fewer states. For matrix reduction 

then, one would expect to use essentially the same kind of program 

for matrices containing 28 or fewer rows. 

A serious disadvantage of the algorithm just described is that it 

becomes quite lengthy for moderate increases in flow table size. For 

example, the author has investigated, among others, a 6-row flow table 

that resulted in a lU-row matrix, an 8-row flow table with a 30-row 

matrix and a 12-row flow table with a 60-row matrix. Determination of 

the pairwise compatibles alone requires an investigation of nl/2(n - 2)I 

pairs where n is the number of rows of the merged flow table. In the 

case of the l4-row matrix, the complete list of maximal compatibles had 

about 20 entries. It was not difficult to obtain what seemed to be a 

minimum row reduction from the list of maximal compatibles but an alge

braic solution to prove it was optimum would be quite tedious by hand 

computation and was therefore not attempted. 

The large increase in work required to obtain an optimum assignment 

for a moderate increase in flow table size is not surprising when one 
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considers the number of assignments that exist for a flow table as a 

function of its size. Earing (3) presents the following table: 

Table 1. Number of secondary assignments as a function of the number 
of flow table rows 

Number of rows Number of secondary Number of non-degenerate 
in flow table variables essentially different 

state assignments 

2 2 0 

3 2 3 
3 3 1 
1| 2 3 
4 3 29 
k It 3k 
5 3 iko  
5 It 1,015 
5 5 2,688 
6 3 lt20 

7 3 8ltO 

9 It 10,810,800 
10 It 75,675,600 
16 It 54,486,432,000 

As previously stated essentially different assignments are those exclusive 

of assignments obtained by complementation or permutation of the secondary 

state variables. 

Another factor that makes optimum reduction of the Boolean matrix 

difficult to obtain for large matrices is due to the fact that no matter 

how many columns appear in the matrix, there are never more than four 

entries specified in each row. As more optional entries are introduced, 

considerably more possibilities must be examined in order to determine an 

optimum reduction. 

The author's experience with the above algorithm would indicate that 

a list of maximum compatibles can be,conveniently obtained by hand 
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computation when the flow table produces a Boolean matrix of about 15 rows 

or less. An algebraic solution to determine a minimum set of maximal com

patibles becomes tedious when the list of maximal compatibles has more 

than 10 entries or so. Next, an algorithm that works well for the reduc

tion of up to 60-row Boolean matrices will be developed. 

Matrix Reduction Algorithm #2 We have just shown that as flow 

tables increase in size it becomes considerably more difficult to obtain 

an optimum secondary assignment, in the sense that the fewest number of 

secondary variables are required. At least this is certainly the case 

using our previous algorithm. No other algorithm is known that will 

handle the problem any easier and always produce an optimum assignment. 

Therefore, one is lead to the development of an algorithm that may be 

used for larger matrices, but cannot be guaranteed to always yield an 

optimum reduction. One would expect such an algorithm to be a series 

of steps leading to a solution, but with the possibility that as each 

step is executed, it is impossible to tell its complete effect on the 

final solution. 

Algorithm §2 for reducing Boolean matrices is based on the assumption 

that for many Boolean matrices, an optimum or near optimum reduction may 

be obtained by removing, on a step by step basis, l-arge groups of inter

secting rows. In other words, look for a largest group of intersecting 

rows, represent them with their intersection, remove them from the matrix, 

and for the part of the matrix remaining, look again for a largest group 

of intersecting rows, etc. The algorithm will be stated, illustrated 

with an example, and then an attempt will be made to show some of the 

reasoning behind the steps. In the algorithm a specified entry is a 1 
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or 0. The optionalentry (-) is unspecified. 

1. Select a column of the Boolean matrix with the largest 

number of specified entries and identify it with the 

letter A. If several columns have the same largest 

number of specified entries, arbitrarily select one of 

them. 

2. Complement appropriate rows of the matrix so that all 

specified entries in the column selected in Step 1 

agree. 

3. Identify those rows that are not specified under the 

column selected in Step 1 with the letter B. 

4. Examine each column not identified with an A and deter

mine the difference between the number of I's and O's 

in each of these columns. Ignore for this count, those 

rows identified with a B or C. 

5. Select the column from Step 4 that has the largest dif

ference magnitude. Set that coluiui to a 1 or 0, which

ever was larger, and identify the column with an A. 

If several columns have the same largest difference, 

arbitrarily select one of them. 

6. Examine those rows not identified with a B or C. If a 

row does not agree with the setting of the column in 

Step 5, identify that row with a C. 

7. Consider those rows identified with a B and specified 

under the column selected in Step 5. Remove the B 

identification from these rows and either complement 
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the selected column setting in Step 5. 

8. Go back to Step 4 unless all columns are identified with 

an A. If all columns are identified with an A, go to 

Step 9. 

9. All rows not identified with a C have an intersection. 

This intersection represents one of the partitions to 

be used in the assignment. Determine this intersection 

and remove the covered rows from the matrix. Remove all 

identifiers from the remaining matrix and go back to 

Step 1. The algorithm is ended when there are no rows 

remaining in the matrix. 

Now the algorithm will be illustrated with an example. Consider 

the example flow table in Figure 33 and its corresponding Boolean matrix 

in Figure 3^. 

© 
2 3 k a 

1 5 © T b 

8 
© 

9 12 c 

© © 

©
 

©
 d 

10 6 © e 

g 
© © © 

f 

Figure 33. Flow table for algorithm illustration 
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a b c d e f 
1 ab cd 0 0 1 1 - -

2 ab ef 0 0 - - 1 1 

3 cd ef - - 0 0 1 1 
k ac bf 0 1 0 - — 1 

5 ac d 0 - 0 1 - -

6 ac e 0 - 0 - 1 -

7 bf d - 0 - 1 - 0 
8 bf e - 0 - - 1 0 

9 ad be 0 1 - 0 1 -

10 ad cf 0 - 1 0 - 1 
11 be df - 0 1 - 0 1 
12 ae bd 0 1 - 1 0 -

13 ae cf 0 - 1 - 0 1 
Ih bd cf — 0 1 0 — 1 

Figure 3h.  Boolean matrix for flow table in 
Figure 33 

The algorithm proceeds as follows: 

1. Columns a, b, c and f each have nine specified entries. 

Select column a and identify it with an A. 

2. No rows need to be complemented, 

3. Identify rows 3, T, 8, 11 and lit with a B. 

Ij-. Counts of I's and O's must be made for columns b through 

f. In column f, for example, there is a count of zero 

I's and four O's. 

5. Column f is selected, set to a 1, and identified with 

an A. 

6. All rows not identified with a B or C agree with the set

ting of column f. 

7. The B identification is removed from rows 3, T, 8, 11 

and l4. Rows 7 and 8 are complemented. 

8. Return to Step 

I  
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4. Count I's and O's in columns b,c,d and e. 

5. Column d is selected and set to a 0, since it has a 

maximum count difference with five O's and three I's, 

6. Identify rows 1, 5 and 12 with a C, Notice that rows 

identified with a C are those that will not be covered 

by the partition presently being constructed. 

7. No rows are identified with a B, 

8. Return to Step it. 

At this point the matrix and identifiers appear as follows: 

a b c d e f 
1 0 0 1 1 - -

2 0 0 - - 1 1 

3 - - 0 0 1 1 
k 0 1 0 - -o 1 

5 0 - 0 1 - —» 

6 0 - 0 - 1 -

7 - 1 - 0 - 1 
8 - 1 - - 0 1 

9 0 1 - 0 1 -

10 0 - 1 0 - 1 
11 - 0 1 - 0 1 
12 0 1 - 1 0 -

13 0 - 1 - 0 1 
lit - 0 1 0 - 1 

A A A 

If one proceeds through the algorithm until Step 9 is entered, all columns 

will have been identified with the letter A. All rows will have been 

identified with the letter C except rows 3, 6, 7 and 9. So that the 

reader may follow, in case of a tie in Steps 1 or 5, the left-most column 

was selected. Therefore, rows 3, 4, 6, 7 and 9 should have lui intersec

tion that in turn determines a partition to cover these rows in the 

matrix. This is the case and the resulting partition is = {a,c,d; b,e,f}. 

The reader may easily verify that partitions 3, 6, 7 siid. 9 of Figure 3^+ 
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are included in 

Let one now go back to Step 1 of the algorithm. The matrix now con

sists of Figure 3̂  exclusive of rows 3, 6, 7 and 9= The process is 

continued until we get the partitions and secondary assignment shown 

in Figure 35. 

= {a,c,d; b,e,f} 

Tg = {a,b,d,e; c^f} 

Tg = {a,c,e; b,d,f} 00 

= {a,b; c,d,e,f} 01 

11 

10 

Figure 35. Partitions and secondary 
the flow table in Figure 

An attempt will be made now to show the reasoning behind some of the 

steps of the algorithm. The main theme of the algorithm is: Given an 

incompletely specified Boolean matrix, determine a partition that will 

cover the maximum or near maximum number of rows in the matrix. These 

covered rows are then discarded and a subset of the original matrix is 

considered. One way to arrive at this maximum partition is to determine 

one by one, the setting of each individual column, so that a maximum 

number of rows are covered. Or alternately, determine the column set

tings in such a manner that a minimum number of rows of the matrix will 

be discarded as the setting for each column is established. Since the 

% 
00 01 11 10 

a 

e c 

d f 

b 

assignment for 

33 
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intent is to determine the column settings on a step by step basis, the 

outcome will be greatly dependent upon which column one starts with. 

Hence, in Step 1 the column is selected that will bring a maximum number 

of rows into consideration at the beginning of the algorithm. One would 

suspect also, that the outcome would be greatly dependent upon the order 

in which one determined the setting of the succeeding columns. Therefore, 

in Steps 4 and 5 one chooses that column which is most strongly associated 

with the already chosen columns and at the same time requires that a rela

tively few number of rows be excluded from further consideration. While 

the algorithm always attempts to find a maximum intersection in the matrix, 

there is obviously no guarantee that a true maximum is always produced. 

However, experience has indicated that at least a near maximum intersection 

can be obtained in each case. 

An important advantage of this algorithm for the reduction of the 

Boolean matrix is that the steps are very systematic, programmable on a 

computer and capable of handling relatively large matrices. Matrices of 

up to 6o rows have been reduced by hand computation using this algorithm. 

It might be pointed out that for all examples presented thus far in this 

paper, application of this algorithm for matrix reduction has produced 

what seemed to be optimum reductions in every case. 

An obvious disadvantage of the algorithm is that there exist matrices 

where the optimum reduction or reductions does not include the intersec

tion of the maximum number of rows. The 60-row matrix mentioned earlier 

was reduced with the above algorithm to a matrix of 5 rows. The first 

intersection covered 27 rows. However, with a little trial and error, a 

reduced matrix of 4 rows was obtained and no intersection covered more 
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than 25 rows. 

Summary Two algorithms that produce optimum or near optimum row 

reductions for incompletely specified Boolean matrices have just been 

described. Matrices of 15 rows or less can be optimally reduced by 

Reduction Algorithm #1, while matrices of at least 60 rows may be reduced 

by Reduction Algorithm #2 with no guarantee that the result is optimum. 

The first algorithm has the advantage of producing an optimum solution 

butthe disadvantage of becoming quite long and impractical for matrices 

of more than 15 rows and does not appear to be easily programmable. The 

second algorithm has been used for up to 60-row matrices, could be pro

grammed to handle even more, but has a disadvantage of not necessarily 

producing an optimum reduction. 

Assignment Method #1 

A minimum transition time secondary assignment method, which will be 

called Assignment Method #1, is summarized in Figure 36. Each block of 

Figure 36 has been discussed in detail. Either Algorithm §1 or §2 may 

be used to reduce the Boolean matrix. The reader is aware of the advan

tages and limitations of each. 

This assignment method is theoretically applicable for flow tables 

of any size, but practically speaking, it is efficient in terms of time 

and results for flow tables of about 10 rows or less and can become quite 

lengthy for hand computation when working with flow tables of 12 rows or 

more. Examples of merged flow tables larger than 12 rows have been rare 

in the literature. Recall that a merged flow table of 12 rows could 

correspond to a considerably longer primitive flow table. The true 
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Reduced matrix 

Partition list 

Merged flow table 

Boolean matrix 

Secondary 
assignment 

Reduction 
Algorithm 

Reduction 
Algorithm 

Figure 36. Summary of Secondary Assignment Method #1 

limiting factor in the assignment method is the size of the incompletely 

specified Boolean matrix to be reduced. When Reduction Algorithm #2 is 

programmed, it may be possible to consider merged flow tables larger 

than 12 rows. 

5. AssiRnment Method #2 

It is advantageous to construct an assignment method that is shorter, 

although less efficient in terms of secondary variables, than Method #1. 

This will allow one to at least establish an upper bound on the number 

of secondary variables needed for a minimum transition time assignment. 
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Let one consider such a method in this section. It will be a modification 

of a method due to Liu (6). Liu does not explain his algorithm in terms 

of partitions and it seems to be longer and more difficult than it need 

be. Assignment Method §2 will be introduced with a definition and theorem. 

Definition 19: A column partition is a partition constructed 

from a single column of a flow table with each k-set of the 

column appearing as a separate block. A column partition may 

be either completely or incompletely specified. 

As an illustration of Definition 19, consider column of Figure 33. 

The column partition is ir = {a,b; c,d; e,f}. This column partition is 

completely specified because all elements of the set a through f are 

specified in the partition. Incompletely specified column partitions 

arise when there are optional entries in the corresponding column of the 

flow table. 

Theorem 2: A secondary assignment constructed from all the 

column partitions of a flow table contains no critical races, 

even if all transitions are direct. 

Proof: Consider a column of a flow table to contain n k-sets. These 

k-sets can be distinguished by the product of two-block partitions 

where is the smallest integer ̂  loggn. If the product of these 

two-block partitions distinguishes all of the k-sets, then for each 

pair of k-sets, n^ and n^, some one of these two-block partitions must 

contain n^ and n^ in separate blocks. Transitions can occur only within 

k-sets. Assume rows r. and r. of Theorem 1 to be in k-set n and rows 
1 j P 

r, and r^ to be in k-set n . Now all the conditions of Theorem 1 are 
k 1 q 

met. Therefore, there are no critical races in the flow table column and 
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all transitions may be accomplished directly. 

Since races are always restricted to the columns of a flow table, it 

follows that critical races can be avoided in the entire flow table if 

all the column partitions are used to construct the secondary assignment. 

Clearly, before the column partitions are coded to give the assign

ment, only those partitions that are essentially different should be re

tained. An example will be given to illustrate how efficient this assign

ment method may be for some particular flow tables. This example, shown 

in Figure 37, is one for which Caldwell (l) determines a secondary assign

ment but by a technique quite longer and less systematic than our Method 

# 2 .  

h ^3 

© © 11 15 a 

© 7 12 0 b 

© 5 - 15 c 

© 7 - 13 d 

3 © 0 16 e 

1 © 11 - f 

3 © 9 - g 

4 8 0 0 h 

- 6 © 16 j 

- 8 0 l4 k 

2 - 12 © 1 
k - 10 0 m 

Figure 37. Flow table from Caldwell 
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The column partitions are 

TT^ = {a,f; b,l; c,e,g; d,h,m} 

TTg = {a,c; b,d,f; e,j; g,h,k} 

b,k,l; e,g; h,m} 

11^ = {a,c,l; b,d; e,J,m; h,k} 

Note that all the column partitions are incompletely specified. Just by 

inspection of these column partitions it can be seen that the completely 

specified partition = {a,f,j; b,k,l; c,e,g; d,h,m} includes and 

and ïïg = {a,c,l; b,d,f; e,j,m; g,h,k} includes ir^ and ttĵ . Therefore, the 

coding of the,blocks of and itg will result in a satisfactory minimum 

transition time assignment. Two secondary variables are needed to code 

each partition for a total of four secondary variables in the assignment. 

This is the minimum number of variables one could use to code any 12 row 

table. The secondary assignment is shown in Figure 38; y^ and y^ code 

TT^, y^ and yj^ code tt^. 

y^Ygygyi; 

a - 0 0 0 0 
b - 0 1 0 1 
c - 1 0 0 0 
d - 1 1 0 1 
e - 1 0 1 0 
f - 0 0 0 1 
g - 1 0 1 1 
h - 1 1 1 1 
j - 0 0 1 0 
k - 0 1 1 1 
1 - 0 1 0 0  
m - 1 1 1 0 

00 

01 

11 

10 

% 
00 01 11 10 

a 1 c 

f b d 

k h g 

j m e 

Figure 38. Secondary assignment for the flow table 
in Figure 37 
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The above example illustrated a case where Assignment Method #2 

produced a minimum transition time assignment with a minimum number of 

secondary variables. If Method #2 were being used in that example to 

obtain an upper bound on the number of secondary variables required, 

there would be no need to consider any other algorithm because the upper 

bound turned out to be the lower bound as well. Unfortunately, Method #2 

does not work this well in most cases. Huffman (5) develops in his paper, 

a flow table for a reversible counter. The merged flow table consists of 

eight rows and if Method #2 is used to code the table, six secondary 

variables are required. However, Method #1 produces a code requiring only 

three secondary variables. 

As a further comparison, consider coding the flow table of Figure 28 

with Method #2 and compare that with the assignment shown in Figure 29. 

The column partitions are: 

TT^ = {a,b,e; c,f} 

TTg = {a,c; b,f; d,e} 

TT^ = {a,d; b,c,d} 

TTj^ = {a,c; b,d; e,f} 

It would appear that six state variables are needed to make an assignment. 

This number can be reduced by observing that and are covered by 

= {a,d; b,d,e,f} 

TTg = {a,b,c,f; dTë} 

= {a,b,c,d; e,f} 

By using these three partitions along with ir^ and tt^, an assignment can 

be made using five secondary variables. But Figure 29 shows an assignment 
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with only three secondary variables. 

Interestingly enough, there is a close relationship between this 

assignment method and Method #1. In terms of the Boolean matrix introduc

ed in Method #1, Method §2 can be thought of as a reduction of that 

Boolean matrix on a sectional basis. Each section of the matrix corres

ponding to the transitions in a single column of the flow table is first 

reduced, and then the sections are compared with one another in an attempt 

to achieve further reduction. 

Summary Assignment Method #2 consists of constructing a minimum 

transition time assignment from the column partitions of a flow table. 

The method may be quite inefficient in terms of the number of secondary 

variables. But it is easy to obtain and can be useful as an upper bound 

on the number of variables needed to code the flow table. For some flow 

tables, the resultant assignment may be considered minimum or near mini

mum with no further investigation required. 

6. Assignment Method #3 

Here we consider what Liu (6) describes in his paper to be an upper 

bound on the number of secondary variables required for a minimum transi

tion time assignment. Liu has shown that a minimum transition time 

secondary assignment in which the row assignments correspond to an equi-

disteint error-correcting code contains no critical races. For a 2''^-row 

flow table (m an integer) an error-correcting code of 2™ message words is 

required. But the code words require 2^ - 1 bits, which corresponds to a 

secondary assignment with 2™ - 1 secondary variables. The assignment may 

be made independent of the flow table structure, and is usually an effi

cient assignment only for those flow tables where there are transitions 
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between all pairs of rows. Fortunately, most practical 2™-row flow 

tables, except perhaps 2-row and 4-row tables, do not have transitions 

between all pairs or rows and hence one seldom needs to resort to this 

assignment method. For large flow tables the number of secondaries re

quired approach the number of rows in the table. 

What one has here then, in Assignment Method #3, is the easiest 

method of all to apply, but a method that tends to be very inefficient 

in obtaining an optimum code for most flow tables larger than four rows. 

As Liu points out though, it is useful as an upper bound assignment. 

Caldwell (l) reports a minimum transition time assignment method due 

to Huffman. It is based on a row set concept with multiple codes assigned 

to each row of the flow table. It differs from Liu's upper bound in that 

each transition may be made with a change of only one secondary variable; 

but the assignment still requires 2™ - 1 secondary variables for a 2™^row 

flow table. Since Hufflnan's method is similar to Liu's in the number of 

variables required, Huffman's method will not be considered as a separate 

assignment method in this paper. 

7. Incompletely merged flow tables 

Previous examples were concerned with the coding of merged flow 

tables. In some instances, one may be interested in an assignment for 

flow tables that have not been completely merged. Maley and Earle (7) 

show that if one merges only those rows of the primitive flow table that 

have the same output, it is sometimes possible to code the rows in such 

a manner that the output is a function of a single secondary variable, 

and thus one may save the entire output gating. The result is fewer logic 

stages and faster propagation time fro# circuit input to circuit output. 
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The assignment methods developed in this paper always yield assignments 

free of critical races and always assign a unique code to each row of a 

merged flow table. However, if the flow table is not completely merged, 

assignments Methods #1 and #2 will still be free of critical races but 

there is no guarantee that they will distinguish all rows of the flow 

table. Method #3 will always distinguish the rows because the assignment 

is made independent of the flow table structure. This will be illustrat

ed with the example primitive flow table of Figure 39. 

1 2 3 1+ 
z z 

J. 

Q 2 It 3 00 

1 © 5 - 01 

1 - 6 © 00 ©
 CO 1—1 

10 

1 2 @ 7 01 

1 8 @ 3 00 

1 - 5 @ 11 

1 ® 6 - 10 

Figure 39. Example primitive flow table 

A merged flow table for Figure 39, subject to the additional constraint 

that the output of merged rows must agree, is shown in Figure ItO. The 

application of Assignment Method §1 produces the following partitions 

(corresponding to the list of maximal compatibles)and algebraic solution: 
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Il Ig I] 

Q 2 H 3 

1 ©0 7 

1 8 0© 

18 0 7 

1 - 5 © 

1 (s) 6 _ 

^1^2 

00 

01 

00 

10 

11 

10 

Figure 1*0. Merge of the primitive flow table in Figure 39 

t^A = {a,b,e; c,d,f} ADF + BCE + ACEF + BCDF + ABDE 

TTg = {a,b,d,e; c,f} 

TTç, = {a,b,c; d,e,f} 

TT_ = {a,c,f; b,d,e} 

TTg = {a,c,d,f; b,e} 

TTp = {a,d; b,c,e,f} 

If one selects the first term of the algebraic solution, ADF, the result 

is three partitions that do not distinguish all the rows of the flow table. 

The product of the partitions ir^, and is 

\*^D*^F ~ f^ 0. Therefore, rows b and e will have the 

same code in the secondary assignment. 

On the other hand, the selection of the second term in the algebraic 

solution, BCE, does give a set of partitions such that their product is 

the 0 partition. If the variables y^, y^ and y^ code the partitions 

TTg and TTg respectively, one may write for output expressions, = y^ and 

Zg = Yg" If the output code had described partitions ÏÏ̂  and above, it 
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might have been advantageous to choose the assignment given by the third 

term of the algebraic expression, even though it involves the use of an 

additional secondary variable. 

If Matrix Reduction Algorithm §2 in Assignment Method #1 is used, 

one does not have available a selection of alternate assignments and 

therefore some trial and error may be necessary to come up with an assign

ment that distinguishes all rows. It is sometimes possible to complete 

the incompletely specified partitions that may result from Algorithm #2 

and thereby arrive at a code. If this doesn't work, one may have to add 

partitions solely for the purpose of distinguishing some of the rows. 

8. Conclusions and summary 

Three minimum transition time assignment methods have been developed 

and illustrated. Assignment Method #1 is best in the sense that it pro

duces codes utilizing a minimum or near minimum number of secondary 

variables. Its main disadvantage is that it often takes longer to apply 

Method #1 than the other two. Method §1 produces incompletely specified 

Boolean matrices of up to perhaps 60 rows for a 12-row flo'j table. The 

primary limiting factor in the application of Method ifl is the size of 

this Boolean matrix. Two algorithms were introduced for the purpose of 

systematically reducing such matrices. Matrix Reduction Algorithm #1 

yields an optimum code but becomes unwieldy for hand computation in the 

case of matrices with more than about 15 rows. Algorithm #2 can handle 

matrices with up to about 60 rows but does not guarantee an optimum solu

tion. Experience has shown, however, that an optimum solution is fre

quently obtained and at least a near optimum solution always results. 

Matrix Reduction Algorithm §2 is programmable and it is felt that computer 



www.manaraa.com

77 

solutions could be obtained for matrices considerably larger than 60 rows. 

Merged flow tables longer than 12 rows have been rare in the literature. 

So even without programming. Assignment Method ^1, coupled with Matrix 

Reduction Algorithm #2, can be conveniently used to code nearly all flow 

tables of current interest. 

Assignment Method §2 is easier to apply, but is less efficient in 

terms of secondary variables, than Method §1, Method §2 utilized the 

column partitions of a flow table in the secondary state assignment. It 

was shown that the set of column partitions always produces an assignment 

free of critical races. The column partitions often contain more than 

two blocks. The coding of these partitions with more than two blocks is 

a state assignment problem in itself. For example, just as there are 

three significantly different ways to code a 4-row flow table, there are 

also three significantly different ways to code a It-block partition. A 

"good" assignment for the column partitions may result in the sharing of 

secondary variables between column partitions while a "poor" assignment 

may not. This was illustrated on page 71 where it was discovered that 

three 2-block partitions could be used to cover two 3-block column parti

tions with the effect of reducing the number of secondary variables by one. 

The advantage of Method #2 is that it is relatively quick to apply. The 

disadvantage is that it is often difficult to determine a "good" assign

ment for each column partition that will result in an overall "good" 

assignment for the complete flow table. 

Assignment Method §3 is the simplest of all to apply, but for large 

flow tables the resulting code uses an excessively large number of 

secondary state variables. For a 2™-^row flow table, 2™ - 1 secondary 
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variables are required. The assignment is simply an equidistant error-

correcting code, a function only of the number of rows in the flow table 

and can be assigned independent of the flow table structure. 

A good procedure to use in obtaining an assignment is to consider 

Method #3 as an upper bound for Method #2 and to consider Methods ^2 

and #3 as upper bounds for Method #1. 

The assignment methods were designed for merged flow tables. For 

unmerged tables, partitions from Method #1 and Method #2 do not necessari

ly completely specify a code for the flow table. It may be necessary in 

this case, to add a partition or partitions to distinguish some of the 

rows. 
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III. SUMMARY 

The paper began with a brief introduction to switching circuits. The 

sequential circuit design procedure introduced by Huffman was illustrated 

with an example. Special emphasis was placed on the secondary state 

assignment aspect of the design procedure. For synchronous sequential 

switching circuits, the state assignment problem has been defined in the 

literature as: Given the flow table specifications for the synchronous 

sequential circuit, select a state assignment that results in a simplest 

configuration of combinational logic. But in asynchronous circuits, 

primary consideration must be given to the problem of obtaining assign

ments that avoid critical race conditions. Only asynchronous circuits 

have been considered in this paper. 

One way to avoid critical race conditions in the design of asynchro

nous circuits, is to avoid races altogether. Huffman has described 

general secondary assignment methods that do eliminate all races. He has 

shown that if minimum transition time is not a requirement, a S^'^-row flow 

table can always be satisfactorily coded with 2m - 1 secondary state 

variables. For the case where minimum transition time a requirement, 

Huffman describes an assignment procedure which requires 2"^ - 1 secondary 

state variables for a 2^-row flow table. Both of these assignment methods 

result in codes that may be assigned to any flow table, independent of its 

algebraic properties. 

This paper has been mainly concerned with the development of minimum 

transition time assignment algorithms for asynchronous circuits. The re

sulting assignments are dependent upon the flow table structure. As a 

consequence, it is often the case that fewer secondary variables are 
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required to code the flow table than if Huffman's assignment was used. 

Partition theory is a useful tool in the development of minimum 

transition time assignment methods. Theorem 1 conveniently states the 

necessary and sufficient conditions for such assignments in terms of the 

assignment partitions. On the basis of this theorem, two assignment 

methods were developed, Assignment Method #1 and Assignment Method §2.  

The third assignment method was essentially that of Huffman's and Liu's 

with 2^-1 state variables for a Z^^row flow table. 

A characteristic of the codes resulting from the first two assign

ment methods is that all transitions are accomplished by either non-

critical races or unit cycles. Therefore, all transitions are accomplished 

in a minimum amount of time. In the third assignment method, all transi

tions are non-critical races for Liu's general assignment method, and all 

are unit cycles for Huffman's. 

Interestingly enough, for many flow tables, minimum transition time 

assignments utilize no more secondary variables than the non-minimum 

transition time assignments of Huffman which require 2m - 1 state vari

ables for a 2^^-row flow table. So even when minimum transition time is 

not a requirement, it may be worthwhile to investigate assignments pro

duced by Assignment Method #1 and Assignment Method #2.  

It was shown that as flow tables increase in number of rows, the 

number of essentially different assignments that exist grows at a fan

tastic rate. Because of this, it seems to be the case that as one tries 

to achieve a minimum code for larger and larger flow tables, the amount 

of effort required also increases at a rapid pace. It is a characteristic 

of the assignment methods in this paper that those methods easy to apply 
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often require more than the necessary number of state variables, while; 

those that minimize the number of variables tend to become quite long 

for large flow tables. An attempt was made to illustrate, with a 

variety of examples, this trade-off between optimum code and algorithm 

length. 
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